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ABSTRACT
We propose a novel fast inverse halftoning technique
using an adaptive spatial varying filtering. The
proposed algorithm is significantly simpler than
most existing algorithms while achieving a PSNR
close to that of the set theoretic POCS.

1. INTRODUCTION

Image halftoning is a process to convert a
continue tone image into a binary or halftone
image with only black and white dots, which
resembles the original image when viewed from
a distance. Inverse halftoning is the process to
estimate the original image from the halftone
image.

Existing methods for inverse halftoning include
simple lowpass filtering, set-theoretic
projection-on-convex-set (POCS)[1], wavelet-
based method using edge information in
highpass wavelet image[2], adaptive inverse
halftoning using least mean square sliding
window filter and wiener filter
postprocessing[3], MMSE and MAP projection-
based method[4], and three-level cascade
algorithm[5], etc. These methods can usually
give good visual quality of estimated images,
but they are usually computationally expensive.
In this paper, we will restrict ourselves to
inverse halftoning using linear filter.

It is well known that simple lowpass filtering is
a poor way to do inverse halftoning as shown in
Figure 1. Using the simple lowpass filter F1=[0
1 0;1 1 1;0 1 0]/5  (in Matlab notation), a peak-
signal-to-noise ratio (PSNR) of 16.32dB is
obtained for the 256x256 Lena image, where

PSNR is defined as )255(log10
2

10 MSE  and

MSE is the mean square error. The filter F2=[1
1 1;1 1 1;1 1 1]/9 gives a PSNR of 22.24dB and
F3=[1 4 1;4 7 4;1 4 1]/27 gives 22.48dB. The
image obtained from F3 is shown in Figure 1.

Projection-onto-convex-set (POCS) [1] is one
of the ways to remedy the problem of spatial
invariant filters. After initial lowpass filtering,
POCS would iteratively apply "projection"
followed by filtering, followed by projection
and filtering, and so on. In general, if image
halftoning is applied to the filtered image, it
would not generate the original halftone image.
Therefore, in the "projection" step, the filtered
image is altered or projected in such a way that
the projected image would generate the original
halftone image. POCS can yield significantly
better image than simple spatial invariant filter.
An example is shown in Figure 2. POCS with
F1 gives a PSNR of 27.83dB after 6 iterations.
POCS with F2 can give a PSNR of 27.40dB
after 2 iterations. POCS with F3 can give a
PSNR of 28.05dB after 3 iterations. The
estimated image using POCS with F3 is shown
in Figure 2. While POCS can give significantly
higher PSNR than simple lowpass filtering, its
complexity is much higher which is
undesirable.

In this paper, we propose a simple and ad-hoc
class of inverse halftoning algorithm using
spatially varying linear filters. Compared with
POCS, the proposed method does not require
the projection step which makes it significantly
faster in spite of the minor added complex for
the spatial varying filter. The PSNR achieved
by many algorithms in the proposed class are
above 27dB. The highest PSNR observed is
27.54dB, which is within 0.5dB from that
achieved by POCS.

2. MOTIVATION

Consider a neighborhood around a pixel located
at (i,j). The linear estimate y(i,j) of the pixel at
(i,j)  should be in the form of
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where x(i,j) is the ij th pixel of the halftone
image. Some possible neighborhood, the cross,
3x3 and 5x5, are shown in Figure 3. For spatial
invariant filters, the coefficients do not change
with i and j, i.e. ),(),( lkaljkia =++ .

Such spatial invariant filters tend to be effective
in suppressing the artificial high frequency
signal components in the halftone images.
However, spatial invariant filters do not work
well at object boundaries as pixel values from
different objects are allowed to influence the
same pixel without any discrimination. If
discrimination is imposed such that the
influence from pixels of the different object is
minimized, and that from the same objects is
maximized, good filtering results should be
possible.

3. THE PROPOSED AD-HOC ADAPTIVE
FILTERING

Here we propose to achieve inverse halftoning
using a class of spatially varying filter with
coefficients being a function of the absolute
pixel difference
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Obviously, the pixel difference is zero for
k=l=0 . And the pixel x(i,j) should be more
reliable than the pixels in the neighborhood.
When the absolute pixel difference between
x(i+k,j+l)   and x(i,j) is large, it is not very likely
that the two pixels come from the same object.
In this case, the weight for x(i+k,j+l)   should be
small. Similar, when x(i+k,j+l)   and x(i,j) are
similar, it should be quite likely that they come
from the same object. The weight should then
be large for x(i+k,j+l)  . With such observations,
the function f should in general be a monotonic
non-increasing function.

While there are numerous possible definitions
for f, we study several classes:
3.1 Polynomial map

k
klin iif )255/1()(, −=  for i=0,..., 255

with k ranging from 1 to 10. With k=1, this is
the linear map.

3.2 Exponential map
ia

k
keif −=)(exp, for i=0,..., 255

where the set of ka  are preset constants.

3.3 Exponential map with shift
ia

jk
kejif −+−= )1.02.0()(,exp, for i=0,...,255

where j ranges from 1 to 5.

3.4 Piecewise linear map
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where i1 and i2 are parameters. In this paper, we
test many pairs of i1 and i2 . The four classes of
maps are shown in Fig. 4.

In general, we can divide the pixels around (i,j)
into M different neighborhood. The pixels
within a neighborhood are roughly equi-distant
from (i,j). We can define a mapping function

kf  for each neighborhood to reflect different

likelihood patterns for pixels at various distance
from (i,j).

4. RESULTS AND DISCUSSIONS

In this paper, we studied three type of
neighborhood: the cross, 3x3 and 5x5 shown in
Figure 3. The 5x5 actually can have 2 maps
with one for the inner 3x3 and the other for the
rest of the pixels. The polynomial maps, the
exponential map, exponential map with shift,
and the piecewise linear map were simulated.

The 256x256 Lena image is used a the test
image, which is shown in Figure 5. The halftone
image obtained by error diffusion using the
Floyd-Steinberg kernal is shown in Figure 6.
The PSNR of the proposed algorithm using
various mapping and neighborhood are shown
in Table 1, 2 and 3. It can be observed that the
piecewise linear fpl,k,70   coupled with the 3x3
neighborhood gives a PSNR of 27.54dB, which
is only 0.5dB lower than the computationally
more expensive POCS with F3. The estimated
image is shown in Figure 7 and 8 with 2
iterations and 4 iterations respectively. It can be
observed that the visual quality of fpl,k,70

coupled with the 3x3 is very similar to that of
POCS with F3.



Figure 1: Inverse Halftone using lowpass filter F3

Figure 2: Inverse Halftoning with POCS and F3

(a) (b) (c)
Figure 3: Possible neighborhood for each pixel

Figure 4: The Polynomial, Exponential, Exponential
with shift and Piecewise Linear Mappings

Figure 5: Original 256x256 Lena

Figure 6: Halftone image of Lena by Error Diffusion

Figure 7: Estimated Image using fpl,k,70   coupled
with the 3x3 neighborhood after 2 iterations

Figure 8: Estimated Image using fpl,k,70   coupled
with the 3x3 neighborhood after 4 iterations
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lowpass [1 4 1;4 7 4;1 4 1]/27, PSNR=22.47dB
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f_pl,10,80; PSNR=27.53dB after 2 iteration
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5x5 k=1 k=2 k=3 k=4 k=5
flin,k 24.27 24.42 24.76 24.95 25.06
fexp,k 24.46 24.92 25.23 25.09 25.04
fexp,k,0.1 24.46 24.88 25.29 25.45 25.42
fexp,k,0.3 24.40 24.73 25.10 25.36 25.56
fexp,k,0.5 23.23 23.34 23.49 23.59 23.79
fexp,k,0.7 23.45 23.48 23.64 23.80 23.96
fexp,k,0.9 24.00 24.00 24.00 24.02 24.07

k=0 k=10 k=20 k=30 k=40
fpl,k,150 24.41 24.32 24.24 24.17
fpl,k,120 24.37 24.27 24.18 24.11
fpl,k,100 24.01 23.81 23.75 23.69 23.66
fpl,k,80 23.47 23.63 23.57 23.52 23.50
fpl,k,70 23.05 23.27 23.24 23.22 23.23
fpl,k,60 22.44 23.04 23.04 23.05 23.07
fpl,k,50 22.04 22.88 22.91 22.94 23.02
fpl,k,40 21.44 22.48 22.49 22.55
fpl,k,30 20.58 22.36 22.34
fpl,k,20 19.56 22.26

Table 1: PSNR  of the proposed algorithm using
various mapping for a 5x5 neighborhood

3x3 k=1 k=2 k=3 k=4 k=5
flin,k 25.61 25.20 24.58 23.72 22.93
fexp,k 25.91 25.75 25.42 25.28 24.96
fexp,k,0.1 25.96 25.87 25.70 25.53 25.34
fexp,k,0.3 25.98 25.97 25.92 25.88 25.85
fexp,k,0.5 25.99 25.96 25.98 25.99 25.98
fexp,k,0.7 26.00 26.00 25.97 25.98 26.01
fexp,k,0.9 26.00 26.00 26.00 26.00 26.00

k=0 k=10 k=20 k=30 k=40
fpl,k,150 26.97 26.90 26.77 26.60 26.45
fpl,k,120 27.20 27.14 27.00 26.80 26.61
fpl,k,100 27.39 27.34 27.21 26.99 26.78
fpl,k,80 27.52 27.53 27.45 27.23 27.02
fpl,k,70 27.45 27.54 27.52 27.33 27.14
fpl,k,60 27.29 27.38 27.48 27.37 27.26
fpl,k,50 26.98 27.16 27.27 27.23 27.32
fpl,k,40 25.73 25.90 26.08 26.09
fpl,k,30 24.58 24.94 25.14
fpl,k,20 20.61 21.26

Table 2: PSNR  of the proposed algorithm using
various mapping for a 3x3 neighborhood

cross k=1 k=2 k=3 k=4 k=5
flin,k 25.83 25.69 25.44 25.04 24.51
fexp,k 25.80 25.84 25.80 25.68 25.43
fexp,k,0.1 25.78 25.82 25.82 25.77 25.65
fexp,k,0.3 25.70 25.77 25.80 25.79 25.75
fexp,k,0.5 25.55 25.63 25.73 25.76 25.73
fexp,k,0.7 25.53 25.53 25.58 25.64 25.69
fexp,k,0.9 25.53 25.53 25.53 25.53 25.54

k=0 k=10 k=20 k=30 k=40
fpl,k,150 26.43 26.25 26.07 25.91 25.78
fpl,k,120 26.69 26.47 26.25 26.04 25.88
fpl,k,100 26.95 26.70 26.43 26.19 26.00
fpl,k,80 27.28 27.01 26.71 26.43 26.20
fpl,k,70 27.40 27.18 26.89 26.55 26.32
fpl,k,60 27.46 27.34 27.08 26.72 26.41
fpl,k,50 27.16 27.21 27.13 26.91 26.73
fpl,k,40 25.86 26.01 25.96 25.69
fpl,k,30 23.79 24.22 24.42
fpl,k,20 19.42 20.05

Table 3: PSNR  of the proposed algorithm using
various mapping for a "cross" neighborhood
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