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ABSTRACT

Separation of sources that are mixed by an unknown (hence, ”blind”)
mixing matrix is an important task for a wide range of applications.
This paper presents an adaptive blind source separation method
using second order statistics (SOS) and natural gradient. The SOS
of observed data is shown to be sufficient for separating mutually
uncorrelated sources provided that the temporal coherences of all
sources are linearly independent of each other. By applying the
natural gradient, new adaptive algorithms are derived that have a
number of attractive properties such as invariance of asymptotical
performance (with respect to the mixing matrix) and guaranteed
local stability. Simulations suggest that the new algorithms are
highly efficient and outperform some of the best existing ones.

1. INTRODUCTION

In many applications such as remote sensing, data communica-
tions, speech processing and medical diagnosis, one is interested
to separate different sources that are mixed by some undesired and
unknown matrix. This problem has been traditionally tackled us-
ing various kinds of information measures that are based on higher
order statistics (HOS), e.g., [1]. While statistically superior pro-
vided sufficient data, the HOS approach is often too costly in com-
putation and hardly adaptable to a fast changing environment (such
as fast time-varying mixing matrix). More recently, the second or-
der statistics (SOS) approach becomes a more attractive one, e.g.,
see [3, 4]. The work in [3, 4] provided a very good foundation for
blind source separation using SOS. However, this paper provides
a significant further development on that foundation. In particular,
as shown in Figure 1, our goal here is to design an adaptive source
separation method.
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Figure 1. Adapting a separating matrix

We first generalize the result in [7] by giving necessary and
sufficient identifiability conditions for BSS using a finite set of
correlation coefficients. Then, necessary and sufficient separation
equations are given based on which new contrast functions are for-
mulated. To minimize the latter, two adaptive algorithms are given

for the noiseless and noisy (white or colored) case, respectively.
The new algorithms are shown to enjoy the uniform performance
and local stability properties. Simulation results and comparison
with EASI algorithm [5] are presented.

2. PROBLEM FORMULATION

Considern mutually uncorrelated signals1 whosen linear combi-
nations are observed in noise:

x(t) = y(t) +w(t) = As(t) +w(t)

wheres(t) = [s1(t); � � � ; sn(t)]T is then � 1 complexsource
vector, w(t) = [w1(t); � � � ; wn(t)]

T is then � 1 complexnoise
vector, andA is then � n full rank mixing matrix. The source
signal vectors(t), is assumed to be a multivariate zero-mean sta-
tionary complex stochastic process with second order moments:

S(� )
def
= E (s(t+ �)s�(t))

= diag[�1(�); � � � ; �n(� )]

where�i(�)
def
= E(si(t+ �)s�i (t)), and the superscript� denotes

the conjugate transpose operator. The additive noisew(t) is mod-
eled as a stationary zero-mean complex random process.

The purpose of blind source separation is to find a separating
matrix, i.e., ann � n matrix B such that̂s(t) = Bx(t) is an
estimate of the source signals.

Before proceeding, note that a complete identification of the
separating matrixB (or equivalently the mixing matrixA) is im-
possible in the blind context, because exchange of a scalar between
the source signal and the corresponding column ofA leaves the
observations unaffected. Also note that thenumberingof the sig-
nals is immaterial. It follows that the best that one can do is to
determineB up to a permutation and scaling of its columns [3].
Therefore,B is said to be a separating matrix if

By(t) = P�s(t)

whereP is a permutation and� a non-singular diagonal matrix.

3. FUNDAMENTAL RESULTS

We present here the fundamental results needed throughout the rest
of the paper. More precisely, we present two separation criteria for

1We assume for simplicity and without loss of generality thatn = m

(as many sources as ‘sensors’).



the stationary, temporally correlated source signals (see [4] for de-
tailed proofs of the Theorems below). Consider first the noiseless
case. We have the following Theorem.

Theorem 1 (noiseless case): Let�1; � � � ; �K beK � 1 (non-zero)
time lags and define the1 � (K + 1) vectors�i = [�i(0); �i(�1)
; � � � ; �i(�K)], i = 1; � � � ; n. Then, BSS can be achieved using the
output correlation matrices at time lags0; �1; � � � ; �K if and only
if:

�i and �j are linearly independent for i 6= j (1)

Assume that(1) holds and letz(t) be ann � 1 vector given by

z(t) = Bx(t). Definerij(k)
def
= E(zi(t+ k)z�j (t)). Then,B is a

separating matrix if and only if

rij(k) = 0 and rii(0) > 0 (2)

for all 1 � i 6= j � n andk = 0; �1; � � � ; �K .

In the case of temporally white additive noise (withunknown
spatial covariance), the previous result can be extended as follows:

Theorem 2 (noisy case): Let�1; � � � ; �K beK > 1 (non-zero)
time lags and define the1�K vectors~�i = [�i(�1); � � � ; �i(�K)],
i = 1; � � � ; n. Then, BSS can be achieved using the output corre-
lation matrices at time lags�1; � � � ; �K if and only if:

~�i and ~�j are linearly independent for i 6= j (3)

Assume that(3) holds and letz(t) = Bx(t) be ann � 1 vector.
Then,B is a separating matrix if and only if

rij(k) = 0 and

�KX
k=�1

jrii(k)j > 0 (4)

for all 1 � i 6= j � n andk = �1; � � � ; �K .

We can see that in the trivial case where the sources show identical
normalized spectra, conditions (1) and (3) cannot be satisfied and
thus BSS cannot be achieved. Conversely, when the source sig-
nals have different normalized spectra, it is always possible (with
probability one) to find a set of time lags�1; � � � ; �K such that (1)
(or (3)) is met. This corresponds to the second-order identifiability
condition found in [7]. It is worth to point out that the condition in
[7] is a necessary and sufficient condition for BSS using the whole
set of SOS statistics while condition (1) (resp. (3)) is a necessary
and sufficient condition for BSS using a finite set of correlation
coefficients including (resp. excluding) the zero-lag one.

4. ADAPTIVE ALGORITHMS

In this section, we present SOS-based contrast functions and their
corresponding adaptive optimization algorithms.

4.1. Algorithm 1: Noiseless case

To solve the separating equations (2), we consider the following
least squares error criterion:

G1(z)
def
=

�KX
k=�0

X
1�i<j�m

[jrij(k) + rji(k)j2+

jrij(k)� rji(k)j2] +
mX
i=1

jrii(0)� 1j2 (5)

(with �0 = 0). It is easy to see thatG1(z) is a contrast function
which minimization is equivalent to solving (2). The separation
criterion becomes

B is a separating matrix, G1(z(t)) = 0 (6)

wherez(t) = Bx(t). Our approach to adaptive source separation
may be motivated by first consideringbatchestimation. Consider
the problem of estimatingB using natural gradient technique [2].

The choice of natural gradient technique has been motivated
by: (i) the fact that natural gradient online learning gives the Fisher
efficient estimator in the sense of asymptotic statistics when the
loss function is differentiable [2],(ii) the fact that the natural gra-
dient at pointB depends only on the distribution ofz = Bx and
not onB itself, and as a consequence, natural gradient based algo-
rithms enjoy uniform performance properties (see subsection 4.3),
and(iii) the fact that it is an approximate Newton technique which
can be very simply computed (no Hessian inversion) under the ad-
ditional assumption that at iterationp,B(p) is close to a separating
matrix.

The solutions are obtained iteratively in the form

B
(p+1) = (I+ �(p))B(p) (7)

z
(p+1)(t) = (I+ �(p))z(p)(t) (8)

At iterationp, a matrix�(p) is determined from a local linearization
of G1(Bx(t)). The procedure is illustrated as follows. By using
(8), we have

r
(p+1)
ij (k) = r

(p)
ij (k) +

mX
q=1

�
�(p)
jq r

(p)
iq (k)+

mX
l=1

�
(p)
il r

(p)
lj (k) +

mX
l;q=1

�
(p)
il �

�(p)
jq r

(p)
lq (k)

where
r
(p)
ij (k)

def
= E

�
z
(p)
i (t+ k)z

�(p)
j (t)

�
(9)

Under the assumption thatB(p) is close to a separating matrix, it
follows that

j�(p)ij j � 1; and jr(p)ij (k)j � 1 for i 6= j

and thus, a first order approximation ofr
(p+1)
ij (k) is given by

r
(p+1)
ij (k) � r

(p)
ij (k) + �

�(p)
ji r

(p)
ii (k) + �

(p)
ij r

(p)
jj (k) (10)

By replacing (10) into (5), we obtain the following least squares
(LS) minimization problem fori 6= j:

min k[r(p)jj ; r
(p)
ii ]E

(p)
ij + [

1

2
(r

(p)
ij + r

(p)
ji );

1

2j
(r

(p)
ij � r(p)ji )]k

where

E
(p)
ij

def
=

�
<e(�(p)ij ) =m(�

(p)
ij )

<e(�(p)ji ) �=m(�
(p)
ji )

�
(11)

r
(p)
ij = [r

(p)
ij (0); r

(p)
ij (�1); � � � ; r(p)ij (�K)]T (12)

A solution to the LS minimization problem is given by

E
(p)
ij = �[r

(p)
jj ; r

(p)
ii ]#[

1

2
(r

(p)
ij + r

(p)
ji );

1

2j
(r

(p)
ij � r(p)ji )] (13)



wherej =
p�1 andA# denotes the pseudo-inverse of a matrix

A. Similarly, for i = j we obtain

�
(p)
ii =

1� r
(p)
ii (0)

2r
(p)
ii (0)

(14)

Now, to derive an adaptive version of the above batch algo-
rithm we replace in the above formulae the iteration indexp by the
time indext and estimate adaptively the correlation coefficients
r
(t)
ij (k). The adaptive algorithm can be summarized as follows: At

time instantt+ 1

� Update the correlation matrices, i.e.,R(k) = E(z(t +
k)z�(t)), k = 0; �1; � � � ; �K , using the following averag-
ing technique:

z(t+ 1) = B
(t)
x(t+ 1)

R
(t+1)(k) = (1� �t+1)R

(t)(k) +

�t+1z(t+ 1)z�(t+ 1� k)

where�t is a decreasing and positive sequence. Note that
r
(t)
ij (k) is the(i; j)-th entry ofR(t)(k).

� Estimate�(t+1) using equations (13) and (14) and the up-
dated correlation coefficientsr(t+1)ij (k).

� Update the value of the separating matrix, the correlation
matricesR(k); k = 0; �1; � � � ; �K , and the estimated sources
z(t+ 2 � k); k = �1; � � � ; �K :

B
(t+1) = (I+ �(t+1))B(t)

R
(t+1)(k) = (I+ �(t+1))R(t+1)(k)(I+ �(t+1))�

z(t+ 2� k) = (I+ �(t+1))z(t+ 2� k)

4.2. Algorithm 2: Noisy case

Similarly to the approach shown in subsection 4.1, we define from
Theorem 2 the following contrast function:

G2(z)
def
=

�KX
k=�1

X
1�i<j�m

[jrij(k) + rji(k)j2+

jrij(k)� rji(k)j2] +
mX
i=1

j
�KX
k=�1

jrii(k)j � 1j2 (15)

Minimizing this contrast function leads to an adaptive algorithm
similar to the previous one except for equations (13) and (14) that
become:

�
(p)
ii =

1�P�K
k=�1

jr(p)ii (k)j
2
P�K

k=�1
jr(p)ii (k)j

(16)

E
(p)
ij = �[~r

(p)
jj ; ~r

(p)
ii ]#[

1

2
(~r

(p)
ij + ~r

(p)
ji );

1

2j
(~r

(p)
ij � ~r

(p)
ji )] (17)

where

~r
(p)
ij = [r

(p)
ij (�1); � � � ; r(p)ij (�K)]T (18)

4.3. Uniform performance and stability

Uniform performance: This is an important and natural property
in the context of source separation [5]. The uniform performance
of an estimator is the property to have (in noiseless case) the same
asymptotic performance whatever the mixing matrix is. In other
words, the performance of source separation depends only on the
source statistics and not on the mixing matrix.

In our case, the uniform performance is insured because of the
use of Natural gradient. This can be seen in the following way:
Consider the evolution of the global systemC(t) = B(t)A given
by right multiplying (7) by matrixA:

C
(t+1) = (I+ �(C(t)

s(t)))C(t)

The evolution ofC(t) would be same for two mixing matricesA
andA0 if we initialize the algorithm withB0 andB0

0 such that
B0A = B0

0A
0. Hence, with respect to the global systemC(t),

changing the mixing matrix is equivalent to changing the initial
value ofB which obviously does not change the asymptotic per-
formance of the algorithm.

Stability: We study here the stability of the proposed adaptive al-
gorithms at the solution (optimum) points. Thanks to the uniform
performance (or equivariance) property, it suffices to study the sta-
bility of the algorithms for the global systemC(t) at the optimum
pointC? = I. General results for stochastic algorithms, e.g., [6],
show thatC? is locally asymptotically stable if all the eigenvalues
of matrix� defined as:

� = �@	(C)

@C
jC=C? (19)

have positive real parts, where	(C) = E(�(Cs(t))C). Simple
calculations (that are omitted here for simplicity) reveal that for
both algorithms the linear approximation of	 in the neighbor-
hood ofC? = I is

	(I+ e) = �e+ o(e)

which shows that� = I. Thus, unlike the EASI algorithm in [5],
the stability is satisfied without any additional assumption.

5. NUMERICAL SIMULATIONS

In our simulation an array ofn = 2 sensors with half wavelength
spacing receives two signals in the presence of stationary com-
plex temporally white noise. The two source signals are gener-
ated by filtering complex circular white Gaussian processes by
an AR model of order1 with coefficienta1 = 0:95e0:5j and
a2 = 0:5e0:7j. The time lags (delays) involved are�1 = 1 and
�2 = 2. The sources arrive from the directions�1 = 10 and
�2 = 30 degrees. In order to evaluate the performance of our
algorithms, we define a performance index called the mean rejec-
tion level (we assume here that the permutation indeterminacy is
P = I) as [3]

Iperf def
=

X
p6=q

Ej(BA)pqj2
Ej(BA)ppj2

The signal to noise ratio is defined asSNR = �10log10�
2,

where�2 is the noise variance; the mean rejection level is esti-
mated by averaging 50 independent trials.



Figure 2 shows the performance of Algorithm 1 (derived from
Theorem 1) for different SNRs. The noise signal is temporally and
spatially white. As we can expect it, Algorithm 1 performs well
only when the signal to noise ratio is ‘sufficiently’ high.

Figure 3-a and 3-b show the performances of Algorithm 2 (de-
rived from Theorem 2) for spatially white noise and spatially col-
ored noise, respectively. In the latter case, the noise covariance
is of the formRn =

p
n�2QQH=kQk2, whereQ is given by

Qij = 0:9ji�jj. Algorithm 2 performs well even at relatively low
SNR but is outperformed by Algorithm 1 for high SNRs.

In Figure 4, we compare Algorithm 1 with EASI algorithm
[5]. This is an adaptive HOS-based algorithm for BSS using natu-
ral gradient. In this case, the two source signals are generated by
filtering QAM4 processes by the previous AR filter. The noise is a
spatially white Gaussian process and its variance is�2 = �30dB.
In this context, we can see that Algorithm 1 outperforms the EASI
algorithm in both convergence speed and estimation accuracy.

In Figure 5, we check the uniform performance property of
Algorithm 1 (in the noiseless case). We consider 3 mixing ma-
tricesA1 = [a(10o); a(30o)], A2 = [a(10o); a(15o), andA3
a complex random matrix. Figure 5 shows that the performance
of Algorithm 1 at the steady state nearly does not depend on the
mixting matrixA.

6. CONCLUSION

This paper presents new blind source separation methods for tem-
porally correlated stationary sources. Two SOS-based contrast
functions are introduced for noiseless and noisy cases. Adaptive
algorithms (namely Algorithm 1 and Algorithm 2) based on natu-
ral gradient technique are proposed to minimize the contrast func-
tions and perform the BSS. Unlike most existing SOS methods,
Algorithm 2 can deal with spatially colored noise case. The uni-
form performance and the stability of the proposed algorithms are
shown. The effectiveness of the new algorithms is demonstrated
by numerical experiments and comparison with EASI algorithm
proposed in [5].
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Figure 2. Performances of Algorithm 1.
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Figure 3. Performances of Algorithm 2: (a) White noise; (b)
Colored noise.
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Figure 4. Performance comparison of Algorithm 1 and EASI
algorithm.
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Figure 5. Uniform performance of Algorithm 1.


