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ABSTRACT the purpose of selection of the best one among them. A simu-

) ) o ~_lation study is presented which shows the best delayed equalizer
Recent studies show that equalizers with different equalization performs much better than that for other equalization delays and

delays achieve different performances. The best performed equalthose given by constant modulus algorithm and linear prediction
izer is not necessarily the one with 0-delay, and often not the caseg|gorithm.

when the channel is non-minimum-phase. In this paper, a blind
channel equalization algorithm is presented, by which equalizers
with all possible equalization delays can be calculated simultane-
ously frpm Fhe segond order statistics of received signals. A (_blind) A direct multi-channel blind equalization system is given in Fig.1:
evaluation index is then presented for the purpose of selecting the
best equalizer. Simulation shows that the best delayed equalizer l"

2. PROBLEM STATEMENT

performs much better than that for other equalization delays and
those given by constant modulus algorithm and linear prediction

algorithm. e =)= ¢
s(k) . . . l y(k)
1. INTRODUCTION : l ' :
Xn
In high-speed wireless communication systems, equalization pro- h, HG)H Cn
cess is needed to suppress the intersymbol interference caused
by multipath channels. Conventional equalization techniques use Fig.1 A model for multi-channel blind equalization

training signals. When wireless channels, especially mobile chan-
nels, are fast variant, training signals must be sent frequently. As\here,
such, a lot of band width has to be occupied. For example, accord-

ing to 900MHz GSM standard, 26 bits out of every 148-bit frame s(+): the (unknown) transmitted signal.

are used as training signals [1]. {hi(z)}:  the (unknown) FIR channel bank.
Recently, blind channel identification techniques [2, 3, 4] and {ni()}:  the additive noises.

blind channel equalization techniques [5, 6, 7, 8, 9] have attracted {z:(")}:  thereceived glgnals.

a lot of interest, because they can achieve equalization without us- {ei(2)}:  the FIR equalizer bank.

ing training signals. Blind channel equalization is preferable since y(): the composite output signal.

it bypasses the estimation of channel length and with reduced com-

The objective of blind channel equalization is to design an
. L . . equalizer banKe;(z)} based only on the second order statistics
According to recent studies, it is found that equalizers with ¢ i1 received signaléz; ()}, such that the composite output
different equalization delays [S, 9] achieve different perfo_rmances. signal y(-) is equal to the transmitted signal-) with possibly

The best performed equalizer is not necessary the one with O-delayg g ,a delays. The objective for this paper is to calculate equalizer

and often not the case when the channels are non-minimum-phase, o5 with all possible equalization delays and then to find the one
In order to choose the best one, we can first find equalizers with achieving the best equalization.

all possible e_qualization_delays and Fhen_ select th_e best one among  |n this paper, matrices are denoted by bold face uppercase let-
them according to a (blind) evaluation index which is presented 4o 5 “co1umn vectors by bold face lowercase letters, and scalars by
here. Algorithms for a sequential estimation of such equalizers plain letters. All of them are defined in complex domain. The su-
have been given in [8, 9]. Because the estimation process is Se'perscriptsH, T and* are Hermitian operator, transpose operator,
quential, it suffers from error propagatiorg., the error occurred - 4 conjugate operator, respectively.

in the earlier estimations will impact through out the latter ones. The convolutional relation between the transmitted sig(al

Inthis paper, a new algorithm is presented, by which the equal- 54 the received signafe; ()} is described by,
izers with all possible equalization delays can be calculated simul- '
taneously. In addition, a (blind) evaluation index is designed for x(k) = Hs(k) 1)

plexity.



where, the received signals are organized in the vector form,
T
x(k) = [x" (), x" (k= 1), -, x" (k= M +1)]
and so is the transmitted signal,
s(k) = [s(k), s(k —1),---,s(k — L+ 1)]"

(The choice ofM and L will be explained later). The system re-
sponse of multiple channels is represented by &hx L Sylvester
matrix H,

h, h, hy 0 0 0
g | 0 hy by o by, 0 0
0 0 0 h, h, hy

which is configured by the coefficients of the channel bhfk)
(in vector polynomial form),

h(z) [71(2), ha(2), -+, B (2)]
= h0+hlzil+...+hNilzf(N71)

where,N is the length of the channel barkg, h,, ...,.h,_, are
all n x 1 vectors, withh,, # 0 andh,,_, # 0. From the structure
of the Sylvester matri#l, we haveL = N + M — 1.

The relation between the transmitted sign@) and the com-
posite output signaj(-) is described by,

y(k) = e H s(k) @)
where,
T T T "
€= 1€y,€, ", 1

which represents the equalizer baak) (in vector polynomial
form),

[61(2)7 62(2), ) en(z)]T

= 90+§12’_1+"'+§M712_(M_1)

whereM is the length of the equalizer bard;, e, , ...,e,,_, are
all n x 1 vectors, withe, # 0 ande,,_, # 0. M is designed
and must be big enough such that the Sylvester mEfrig a thin
matrix,i.e,nM > L =N+ M — 1.

e(2)

The relaxed zero-forcing condition for blind channel equaliza-

tion is given by

y(k) = as(k —1) ®3)
where,« is a nonzero complex number ahds the equalization
delay. Substituting Eq.(2) into Eq.(3), we have

HHe = a*dH_l (4)

whered;+; isanLx 1 canonical vector, in which the only nonzero
elementl locates at th€l + 1)th row. A solutione to Eq.(4) is
called anl-delayed equalizer bank, or simply, &delayed equal-
izer, denoted by;.

The second order statistics of the received sigfal$-)} can
be organized into manlystep autocorrelation matric&(l)’s, [ =
0,1,..,L —1.

R(I) £ B(x(k)x" (k 1))

where,E( ) is the expectation operator. Note tfR¢l) = 0 for
1> L.

3. PRELIMINARIES

The existence of such equalizer bank is not guaranteed for any
given channel bank. An existence condition is given by Massey
and Sain [10].

Theorem 1

An FIR equalizer banKe; (2)} exists, if, and only if, the great-
est common divisor (GCD) of the channel baffk; (z)} satisfies
the following condition:

GCD(h1(2),h2(2), ..., hn(2)) = 2" (5)

for some non-negative integér

In particular, such FIR equalizer bank doesn't exist if the chan-
nel bank{h;(z)} has common nonzero zeros [2]. Note that this
condition can not be satisfied for a single-channel transmission
except for trivial cases. This is why blind channel equalization
techniques rely on multiple channels.

The following theorem due to Torgt al [2] is needed for our
derivation.

Theorem 2

The Sylvester matrid has full column rank if, and only if,
the channel bankh;(z)} has no common zeros.

4. BLIND EQUALIZATION WITH DELAYS

In this paper, the following assumptions are made:

AS1. The channel bankh;(z)} doesn’t have common zeros;

AS2. The transmitted signai(-) is zero-mean, stationary, and
temporally uncorrelated;

AS3. The variance of the transmitted sigré&l) is equal to 1;
AS4. There is no additive noise.

AS2 is reasonable in digital communication environment, where
the encoded information symbols are often interleaved before trans-
mission for the purpose of resistance to burst errors. AS3 is made
without loss of any generality. AS4 is made for the purpose of sim-
plicity. The additive noise can be identified fraRi(0) and then
removed from alR.()’s [2, 3].

Under above assumptions, one set of equalizers with all possi-
ble delays are given by the following theorem.

Theorem 3

If AS1-AS4 hold, then

(1). Foreachl = 0,1, ..., L — 1, a generalized eigenvector
of the matrix pairR¥ (1 + 1) andRZ (1) exists, which associates
with and only with the zero generalized eigenvalue;

(2). The Cholesky decompositidi” R(0)C = U U exists
and the column vectors @U ™" = [eo, e1, ..., e 1] are equal-
izers with all possible equalization delays frénto L — 1, where
C = [Co, Cly..y CL_1].

Now let us restate the blind channel equalization problem: the proof:

objective is to design the best delayed equalizebased on the
estimated autocorrelation matricRg/)’s without the knowledge
of s(-), H, andN.

According to Eqg.(1) and AS2-AS4, we have

R(l) = HI'H? (6)



where,J is anL x L shifting matrix,

0 0 o --- 0 0 0
1 0 o - 0 0 0
0 1 0 0 0 0
0 0 o - 0 0 0
0 0 o - 1 0 0
0 0 o - 0 1 0

Note thatH is a thin matrix, which means there exists some vector
c; such that

H"¢; = vi = [w(0), vi(1), ..., i (1),0, ..., 0"
wherew; () # 0. According to Eq.(6), it can be verified that

R7(1+1) =HI") " 'v;=0 (7)

and

R” ()e; = HIT)'vi = H[vi(1),0,..,0]" #0  (8)

Note that Eq.(7) and Eq.(8) are equivalent to the following equa-

tion
R7(1+1)c; = AR ()e; =0 (9)
holds with and only with\ = 0, i.e, ¢; is a generalized eigen-
vector of the matrix paiR ™ (I + 1) andRZ (1), which associates
with and only with the zero generalized eigenvalue. (1) is proven.
Let us now assume that is a such generalized eigenvector,

i.e, ¢; is the null space oRH(l + 1). From AS1 and Theorem 2,
we have

N *H"¢ =0 (10)

Denoting

H"¢; = v; = [0(0), wi(1), -, 0 (L — 1)]"

Eq.(10) becomes,
(JH)I+1V1 =0

which implies that; (i) = 0fori =1+1,1+2,..., L— 1. Onthe
other hand, since; is not in the null space ®RY (1), we conclude
thatv; (1), vi(I + 1), ...,u;(L — 1) can not be all zero. As such,
Uz(l) #0 andvl(l+ 1) = 1)1([—}—2) = ... = Ul(L — 1) = 0.
Thus,

HHC: [Vo,Vl,...,VL_l]:V (11)

whereV is an upper trianglar matrix with nonzero diagonal ele-
ments, and hence it has full rank. Since

c’Rr(0)Cc =Cc"HH"C =V"V

we conclude thalC”R(0)C has full rank and hence it has a
Cholesky decomposition,

c’Rr(0)c =U"U

where U is an upper trianglar matrix. Note that this Cholesky

decomposition is done on complex domain. Comparing the above

two equations, we have

V = UD (12)

which shows that the column vectors@U ~! are equalizers with
all possible equalization delays frairto L — 1. (2) is proven.
Theorem 3 has importance in practice, where the estimated
R (I)'s often have full rank because of additive noise and statis-
tical fluctuation. In this situation, the generalized eigenveétor
associating with the generalized eigenvalue with the minimum ab-
solute value is the best choice far, which minimizes||R (I +
1)ci||» subject to]|R (I)c;||2 = 1. As such, an iterative algo-
rithm can be designed to approach this generalized eigenvector
gradually [11].

Remark 1

Theorem 3 remains valid if the order of the columnaQris
reversed and the autocorrelation matriBg$)’s are not Hermitian
transposedi.e., C = [cz—1,cr—2, ..., co], Wherec; is the gener-
alized eigenvector associating with only a zero generalzied eigen-
value of the matrix paiR(l + 1) andR(l). Then the Cholesky
decompositionC¥R(0)C = U U exists and gives equalizers
with all possible equalization delays U ~* = [eo, e1, ..., e _1].

Remark 2

Theorem 3 can be extended to the case that if the transmitted
signal s(+) is K-step temporally uncorrelatede., E(s(t)s"(t —
K +1)) #0andE(s(t)s*(t — k)) =0fork > K.

Remark 3

When Theorem 3 is applied, it is not required to know the
length of channel bank, but its lower boundV; and upper bound
Ns. In this situation,M is chosen such thatM > Ny + M — 1
andC contains onlyN; + M — 1 columns.

5. EVALUATION INDEX

After multiple equalizers with different equalization delays are cal-
culated, one needs an evaluation index to make a choice. The usual
ISI index for an estimateBdelayed equalizet;

=" &2
IO =1~ e, )
is not very useful in this problem becauBeis unknown.

Note that all equalizers given by Theorem 3 have normalized
the amplitude variance of the equalized sigg@), no matter what
situation the transmitted signal-) is. Hence, if the transmit-
ted signal has constant modulus, which often is the case in digital
wireless communication, the following index can be used.

D)= (yk) -1 = (&' x(k)| - 1)°
k k

The equalizer having the smalleBt value will be considered as
the best delayed equalizer.

6. ACOMPUTER SIMULATION

The purpose of this simulation is to show that the performance of
equalizers varies as the equalization delay varies, and the varia-
tion may be significant when channels are non-minimum-phase.

whereD is an arbitrary diagonal unitary matrix. Substituting Eq.(12) comparison is made with constant modulus algorithm and linear

into Eq.(11), we have
H'CU'=D

prediction algorithm.
For the purpose of simplicity, only real numbers are used. The
transmitted signak(-) is a random sequence dri,—1}. The



white Gaussian noise is added on the received signglg and also defined, by which one could choose the best delayed equal-

z2(-) at the level of SNR=15dB. izer from these candidates to achieve the best channel equalization.
The following two non-minimum-phase channels are used for Simulation shows that the best delayed equalizer performs much
the simulation. better than that for other equalization delays and those given by

, constant modulus algorithm and linear prediction algorithm.
hi(z) =0.2+40.62"" +0.1272
ha(2) =0.3 —0.8271 —0.2272 8. REFERENCES
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Fig.2b Index D for non-minimum-phase channels

7. CONCLUSIONS

A blind channel equalization algorithm is presented, by which a
set of equalizers with all possible equalization delays can be cal-
culated simultaneously from second order statistics of multiple re-
ceived signals. As such, more choices are available for blind chan-
nel equalization under noisy environment. An evaluation index is



