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ABSTRACT

Recent studies show that equalizers with different equalization
delays achieve different performances. The best performed equal-
izer is not necessarily the one with 0-delay, and often not the case
when the channel is non-minimum-phase. In this paper, a blind
channel equalization algorithm is presented, by which equalizers
with all possible equalization delays can be calculated simultane-
ously from the second order statistics of received signals. A (blind)
evaluation index is then presented for the purpose of selecting the
best equalizer. Simulation shows that the best delayed equalizer
performs much better than that for other equalization delays and
those given by constant modulus algorithm and linear prediction
algorithm.

1. INTRODUCTION

In high-speed wireless communication systems, equalization pro-
cess is needed to suppress the intersymbol interference caused
by multipath channels. Conventional equalization techniques use
training signals. When wireless channels, especially mobile chan-
nels, are fast variant, training signals must be sent frequently. As
such, a lot of band width has to be occupied. For example, accord-
ing to 900MHz GSM standard, 26 bits out of every 148-bit frame
are used as training signals [1].

Recently, blind channel identification techniques [2, 3, 4] and
blind channel equalization techniques [5, 6, 7, 8, 9] have attracted
a lot of interest, because they can achieve equalization without us-
ing training signals. Blind channel equalization is preferable since
it bypasses the estimation of channel length and with reduced com-
plexity.

According to recent studies, it is found that equalizers with
different equalization delays [8, 9] achieve different performances.
The best performed equalizer is not necessary the one with 0-delay,
and often not the case when the channels are non-minimum-phase.
In order to choose the best one, we can first find equalizers with
all possible equalization delays and then select the best one among
them according to a (blind) evaluation index which is presented
here. Algorithms for a sequential estimation of such equalizers
have been given in [8, 9]. Because the estimation process is se-
quential, it suffers from error propagation,i.e., the error occurred
in the earlier estimations will impact through out the latter ones.

In this paper, a new algorithm is presented, by which the equal-
izers with all possible equalization delays can be calculated simul-
taneously. In addition, a (blind) evaluation index is designed for

the purpose of selection of the best one among them. A simu-
lation study is presented which shows the best delayed equalizer
performs much better than that for other equalization delays and
those given by constant modulus algorithm and linear prediction
algorithm.

2. PROBLEM STATEMENT

A direct multi-channel blind equalization system is given in Fig.1:
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Fig.1 A model for multi-channel blind equalization

where,

s(�): the (unknown) transmitted signal.
fhi(z)g: the (unknown) FIR channel bank.
fni(�)g: the additive noises.
fxi(�)g: the received signals.
fei(z)g: the FIR equalizer bank.
y(�): the composite output signal.

The objective of blind channel equalization is to design an
equalizer bankfei(z)g based only on the second order statistics
of the received signalsfxi(�)g, such that the composite output
signal y(�) is equal to the transmitted signals(�) with possibly
some delays. The objective for this paper is to calculate equalizer
banks with all possible equalization delays and then to find the one
achieving the best equalization.

In this paper, matrices are denoted by bold face uppercase let-
ters, column vectors by bold face lowercase letters, and scalars by
plain letters. All of them are defined in complex domain. The su-
perscriptsH , T , and� are Hermitian operator, transpose operator,
and conjugate operator, respectively.

The convolutional relation between the transmitted signals(�)
and the received signalsfxi(�)g is described by,

x(k) = H s(k) (1)



where, the received signals are organized in the vector form,

x(k) =
h
x
T (k);xT (k � 1); � � � ;xT (k �M + 1)

i
T

and so is the transmitted signal,

s(k) = [s(k); s(k � 1); � � � ; s(k � L+ 1)]T

(The choice ofM andL will be explained later). The system re-
sponse of multiple channels is represented by annM�LSylvester
matrixH,

H =
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which is configured by the coefficients of the channel bankh(z)
(in vector polynomial form),

h(z) = [h1(z); h2(z); � � � ; hn(z)]
T

= h0 + h1z
�1 + � � �+ h

N�1z
�(N�1)

where,N is the length of the channel bank;h0, h1; ...,h
N�1 are

all n�1 vectors, withh0 6= 0 andh
N�1 6= 0. From the structure

of the Sylvester matrixH, we haveL = N +M � 1.
The relation between the transmitted signals(�) and the com-

posite output signaly(�) is described by,

y(k) = e
H
H s(k) (2)

where,

e =
h
e
T

0 ; e
T

1 ; � � � ; e
T

M�1

iH
which represents the equalizer banke(z) (in vector polynomial
form),

e(z) = [e1(z); e2(z); � � � ; en(z)]
T

= e0 + e1z
�1 + � � �+ e

M�1z
�(M�1)

whereM is the length of the equalizer bank;e0, e1, ...,e
M�1 are

all n � 1 vectors, withe0 6= 0 ande
M�1 6= 0. M is designed

and must be big enough such that the Sylvester matrixH is a thin
matrix, i.e., nM > L = N +M � 1.

The relaxed zero-forcing condition for blind channel equaliza-
tion is given by

y(k) = �s(k � l) (3)

where,� is a nonzero complex number andl is the equalization
delay. Substituting Eq.(2) into Eq.(3), we have

H
H
e = �

�

dl+1 (4)

where,dl+1 is anL�1 canonical vector, in which the only nonzero
element1 locates at the(l + 1)th row. A solutione to Eq.(4) is
called anl-delayed equalizer bank, or simply, anl-delayed equal-
izer, denoted byel.

The second order statistics of the received signalsfxi(�)g can
be organized into manyl-step autocorrelation matricesR(l)’s, l =
0; 1; :::; L� 1.

R(l) , E(x(k)xH(k � l))

where,E( ) is the expectation operator. Note thatR(l) = 0 for
l � L.

Now let us restate the blind channel equalization problem: the
objective is to design the best delayed equalizerel based on the
estimated autocorrelation matricesR̂(l)’s without the knowledge
of s(�),H, andN .

3. PRELIMINARIES

The existence of such equalizer bank is not guaranteed for any
given channel bank. An existence condition is given by Massey
and Sain [10].

Theorem 1

An FIR equalizer bankfei(z)g exists, if, and only if, the great-
est common divisor (GCD) of the channel bankfhi(z)g satisfies
the following condition:

GCD(h1(z); h2(z); : : : ; hn(z)) = z
�l (5)

for some non-negative integerl.

In particular, such FIR equalizer bank doesn’t exist if the chan-
nel bankfhi(z)g has common nonzero zeros [2]. Note that this
condition can not be satisfied for a single-channel transmission
except for trivial cases. This is why blind channel equalization
techniques rely on multiple channels.

The following theorem due to Tonget al [2] is needed for our
derivation.

Theorem 2

The Sylvester matrixH has full column rank if, and only if,
the channel bankfhi(z)g has no common zeros.

4. BLIND EQUALIZATION WITH DELAYS

In this paper, the following assumptions are made:

AS1. The channel bankfhi(z)g doesn’t have common zeros;

AS2. The transmitted signals(�) is zero-mean, stationary, and
temporally uncorrelated;

AS3. The variance of the transmitted signals(�) is equal to 1;

AS4. There is no additive noise.

AS2 is reasonable in digital communication environment, where
the encoded information symbols are often interleaved before trans-
mission for the purpose of resistance to burst errors. AS3 is made
without loss of any generality. AS4 is made for the purpose of sim-
plicity. The additive noise can be identified fromR(0) and then
removed from allR(l)’s [2, 3].

Under above assumptions, one set of equalizers with all possi-
ble delays are given by the following theorem.

Theorem 3

If AS1-AS4 hold, then
(1). For eachl = 0; 1; :::; L � 1, a generalized eigenvectorcl

of the matrix pairRH(l + 1) andRH(l) exists, which associates
with and only with the zero generalized eigenvalue;

(2). The Cholesky decompositionCH
R(0)C = U

H
U exists

and the column vectors ofCU�1 = [e0; e1; :::; eL�1] are equal-
izers with all possible equalization delays from0 toL� 1, where
C = [c0; c1; :::; cL�1].

Proof:
According to Eq.(1) and AS2-AS4, we have

R(l) = HJ
l
H
H (6)



where,J is anL� L shifting matrix,

J =

2
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� � � � � � � � � � � � � � � � � � � � �
0 0 0 � � � 0 0 0
0 0 0 � � � 1 0 0
0 0 0 � � � 0 1 0
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Note thatH is a thin matrix, which means there exists some vector
cl such that

H
H
cl = vl = [vl(0); vl(1); :::; vl(l); 0; :::; 0]

T

wherevl(l) 6= 0. According to Eq.(6), it can be verified that

R
H(l+ 1)cl = H(JH)l+1

vl = 0 (7)

and

R
H(l)cl = H(JH)lvl = H[vl(l); 0; :::; 0]

T 6= 0 (8)

Note that Eq.(7) and Eq.(8) are equivalent to the following equa-
tion

R
H(l+ 1)cl = �R

H(l)cl = 0 (9)

holds with and only with� = 0, i.e., cl is a generalized eigen-
vector of the matrix pairRH(l+ 1) andRH(l), which associates
with and only with the zero generalized eigenvalue. (1) is proven.

Let us now assume thatcl is a such generalized eigenvector,
i.e., cl is the null space ofRH(l+ 1). From AS1 and Theorem 2,
we have

(JH)l+1
H
H
cl = 0 (10)

Denoting

H
H
cl = vl = [vl(0); vl(1); � � � ; vl(L� 1)]T

Eq.(10) becomes,
(JH)l+1

vl = 0

which implies thatvl(i) = 0 for i = l+1; l+2; :::; L�1. On the
other hand, sincecl is not in the null space ofRH(l), we conclude
thatvl(l), vl(l + 1), ..., vl(L � 1) can not be all zero. As such,
vl(l) 6= 0 andvl(l + 1) = vl(l + 2) = � � � = vl(L � 1) = 0.
Thus,

H
H
C = [v0;v1; :::;vL�1] = V (11)

whereV is an upper trianglar matrix with nonzero diagonal ele-
ments, and hence it has full rank. Since

C
H
R(0)C = C

H
HH

H
C = V

H
V

we conclude thatCH
R(0)C has full rank and hence it has a

Cholesky decomposition,

C
H
R(0)C = U

H
U

whereU is an upper trianglar matrix. Note that this Cholesky
decomposition is done on complex domain. Comparing the above
two equations, we have

V = UD (12)

whereD is an arbitrary diagonal unitary matrix. Substituting Eq.(12)
into Eq.(11), we have

H
H
CU

�1 = D

which shows that the column vectors ofCU�1 are equalizers with
all possible equalization delays from0 toL� 1. (2) is proven.

Theorem 3 has importance in practice, where the estimated
R̂
H(l)’s often have full rank because of additive noise and statis-

tical fluctuation. In this situation, the generalized eigenvectorĉl

associating with the generalized eigenvalue with the minimum ab-
solute value is the best choice forcl, which minimizesjjR̂H(l +

1)cljj2 subject tojjR̂H(l)cljj2 = 1. As such, an iterative algo-
rithm can be designed to approach this generalized eigenvector
gradually [11].

Remark 1
Theorem 3 remains valid if the order of the columns inC is

reversed and the autocorrelation matricesR(l)’s are not Hermitian
transposed,i.e.,C = [cL�1; cL�2; :::; c0], wherecl is the gener-
alized eigenvector associating with only a zero generalzied eigen-
value of the matrix pairR(l + 1) andR(l). Then the Cholesky
decompositionCH

R(0)C = U
H
U exists and gives equalizers

with all possible equalization delays byCU�1 = [e0; e1; :::; eL�1].

Remark 2
Theorem 3 can be extended to the case that if the transmitted

signals(�) is K-step temporally uncorrelated,i.e., E(s(t)s�(t �
K + 1)) 6= 0 andE(s(t)s�(t� k)) = 0 for k � K.

Remark 3
When Theorem 3 is applied, it is not required to know the

length of channel bankN , but its lower boundN1 and upper bound
N2. In this situation,M is chosen such thatnM > N2 +M � 1
andC contains onlyN1 +M � 1 columns.

5. EVALUATION INDEX

After multiple equalizers with different equalization delays are cal-
culated, one needs an evaluation index to make a choice. The usual
ISI index for an estimatedl-delayed equalizer̂el

ISI(l) = 1�
jjHH

êljj
2
1

jjHH êljj22

is not very useful in this problem becauseH is unknown.
Note that all equalizers given by Theorem 3 have normalized

the amplitude variance of the equalized signaly(�), no matter what
situation the transmitted signals(�) is. Hence, if the transmit-
ted signal has constant modulus, which often is the case in digital
wireless communication, the following index can be used.

D(l) =
X
k

(jy(k)j � 1)2 =
X
k

(jêHl x(k)j � 1)2

The equalizer having the smallestD value will be considered as
the best delayed equalizer.

6. A COMPUTER SIMULATION

The purpose of this simulation is to show that the performance of
equalizers varies as the equalization delay varies, and the varia-
tion may be significant when channels are non-minimum-phase.
A comparison is made with constant modulus algorithm and linear
prediction algorithm.

For the purpose of simplicity, only real numbers are used. The
transmitted signals(�) is a random sequence onf1;�1g. The



white Gaussian noise is added on the received signalsx1(�) and
x2(�) at the level of SNR=15dB.

The following two non-minimum-phase channels are used for
the simulation.

�
h1(z) = 0:2 + 0:6z�1 + 0:1z�2

h2(z) = 0:3 � 0:8z�1 � 0:2z�2

Based on the same received signals, five equalizer banks are it-
eratively calculated: one by constant modulus algorithm, one by
linear prediction algorithm, and the other three by Cholesky de-
composition algorithm with equalization delays 0, 1, and 2. Their
ISI performance curves are shown in Fig.2a. It is shown that the
best equalizer bank is for 1-delay equalization and it is much better
than those given by constant modulus algorithm and linear predic-
tion algorithm. The performance indicesD for 0-delay, 1-delay
and 2-delay is shown in Figure 2b. By comparison, it clearly shows
that the one with 1-delay is the best.
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7. CONCLUSIONS

A blind channel equalization algorithm is presented, by which a
set of equalizers with all possible equalization delays can be cal-
culated simultaneously from second order statistics of multiple re-
ceived signals. As such, more choices are available for blind chan-
nel equalization under noisy environment. An evaluation index is

also defined, by which one could choose the best delayed equal-
izer from these candidates to achieve the best channel equalization.
Simulation shows that the best delayed equalizer performs much
better than that for other equalization delays and those given by
constant modulus algorithm and linear prediction algorithm.
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