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ABSTRACT
With improved speech understanding technology, many
successful working systems have been developed. However, the
high degree of complexity and wide variety of design
methodology make the performance evaluation and error analysis
for such systems very difficult. The different metrics for
individual modules such as the word accuracy, spotting rate,
language model coverage and slot accuracy are very often helpful,
but it is always difficult to select or tune each of the individual
modules or determine which module contributed to how much
percentage of understanding errors based on such metrics.

In this paper, a new framework for performance evaluation and
error analysis for speech understanding systems is proposed
based on the comparison with the ‘best-matched’ references
obtained from the word graphs with the target words and tags
given. In this framework, all test utterances can be classified
based on the error types, and various understanding metrics can
be obtained accordingly. Error analysis approaches based on an
error plane are then proposed, with which the sources for
understanding errors (e.g. poor acoustic recognition, poor
language model, search error, etc.) can be identified for each
utterance. Such a framework will be very helpful for design and
analysis of speech understanding systems.

1. INTRODUCTION
With improved speech understanding technology in recent years,
many spoken dialogue systems have been successfully developed
[1]. In general, almost each system is associated with a
performance evaluation and error analysis scheme. For example,
the speech recognizers and language understanding modules
were very often evaluated by different metrics [2], such as the
spotting rate, the word accuracy, the language model coverage,
the slot accuracy, etc., but it’s always difficult to select among
the many available acoustic/linguistic processing modules to
achieve the best understanding results, and determine which
module contributed to how much percentage of which type of
understanding errors based on such metrics. This is apparently
due to the high degree of complexity of such speech
understanding systems and the wide variety of design
methodology and system architecture. Some of the difficulties
also come from the wide variety of application tasks of such
systems. Take the example below. Three acoustic recognition
modules are considered for the acoustic front end of a speech
understanding system: module A with word accuracy 92%,
module B with keyword spotting rate 90% and false alarm rate
7%, and module C with key phrase spotting rate 95% and false
alarm rate 24%. All these metrics are helpful, but none of them

can describe how the acoustic modules A, B or C can perform
within a very complicated speech understanding mechanism and
which one should be selected. For example, all the three modules
can generate a word graph for each utterance for understanding
purposes, but the characteristics of a word graph involved in the
understanding processes include not only the word accuracies or
spotting rates, but many other factors such as the discriminating
functions of the acoustic scores, and the accuracies of the time
spans for the word candidates in the graph. The interaction
among such characteristics with the following language
understanding mechanism is another key. As a result, the
performance metrics for each individual module may not be very
helpful in determining the final understanding performance. Also,
the analysis of the understanding errors and the improvement of
system performance based on error analysis become very
difficult as well for the same reason.

In this paper, a new framework for performance evaluation and
error analysis for speech understanding systems is proposed
based on the comparison with the ‘best-matched’ references
obtained from the word graphs with the target words and tags
given. In this framework, all test utterances can be classified
based on the error types, and various understanding metrics can
be obtained accordingly. Error analysis approaches based on an
error plane are then proposed, with which the sources for
understanding errors (e.g. poor acoustic recognition, poor
language model, search error, etc.) can be identified for each
utterance. Such a framework will be very helpful for design and
analysis of speech understanding systems.

2. THE PROPOSED FRAMEWORK AND
THE BEST-MATCHED REFERENCES

In a speech understanding system as shown on the left-hand side
of Figure 1, each input utterance u is usually first recognized by
an acoustic front end to produce a set of promising word
candidates located on different time spans, or a word graph.
Some graph search algorithms such as the A* search is then
performed on the graph based on some language models to find
the desired hypothesis path1 on the graph. Such a hypothesis path
may contain different types of errors due to deleted, substituted
or inserted words, poor acoustic or language modeling scores,
and wrong time-alignments in the word graph. This hypothesis
path is then transcribed into a hypothesis slot sequence or the
understanding output (denoted as Ph(u) in Figure 1) by some
semantic processing approaches. The evaluation and error
analysis method proposed in this paper is shown on the right –

                                                
1 The word ‘path’ here may represent a word sequence as in the
N-best interface or a tag sequence with associated parsing trees.



hand side of Figure 1. The transcribed text for the input utterance
is first parsed by some semantic parsing algorithm to produce a
transcription path. This path may include all the target words and
tags. These target words and tags are then directly applied on the
word graph obtained in the speech understanding system on the
left-hand side of the figure to perform the target-given graph
search, such that all the target words can be obtained as long as
they are located in the word graph well. The output, the reference
path as shown in the middle of Figure 1, is therefore the ‘upper
bound’ of the hypothesis path because all the target words and
tags are given. This reference path together with the transcription
path obtained directly from the transcription text then go through
the semantic processing to produce the reference slot sequence
(Pr(u) in Figure 1) and the transcription slot sequence (Pt(u) in
Figure 1). Again, the reference slot sequence Pr(u) is the ‘upper
bound’ of the hypothesis slot sequence Ph(u). All the evaluation
and error analysis proposed here in this paper is then based on the
comparison among the three slot sequences: the hypothesis slot
sequence Ph(u), the reference slot sequence Pr(u), and the
transcription slot sequence Pt(u).
In order to analyze how the defected word graphs actually
constrained the understanding accuracy, the concept of ‘best-
matched’ references is introduced here which includes the ‘upper
bound’ reference path generated by the target-given graph search
shown in the middle of Figure 1, and the ‘upper bound’ reference
slot sequence Pr(u) after the semantic processing. In principle,
the ‘best-matched’ reference path is the ‘best obtainable’ path in
the word graph prior to semantic processing, and the ‘best-
matched’ reference slot sequence Pr(u) gives the ‘best
obtainable’ understanding of the utterance given the word graph,
because in both cases the knowledge about the transcription path
has been given. The above description can be summarized with

the following inequality:

As(Ph(u), Pt(u)) ≤  As(Pr(u), Pt(u)) ≡  Br

where As(Pi(u), Pj(u)) denotes the slot accuracy by comparing the
slots of Pi(u) to those of Pj(u), and Br is the reference bound
indicating the degree of understanding achievable from the given
word graph or some kind of metric for ‘the quality of the word
graph’ in terms of understanding. Such a metric is sometimes
very useful because it provides more information than the
acoustic metrics alone. For example, different acoustic front ends
can be compared with this metric for understanding purposes.
Also, with the proposed approach as shown in Figure 1, more
detailed error analysis in terms of understanding performance
also becomes possible as will be given below.

3. UTTERANCE CLASSIFICATION
Based on the relationships among the three slot sequences, Ph(u),
Pr(u), and Pt(u) for each utterance, all the utterances can be
classified into seven different clusters, as shown in Figure 2. The
relationship, ‘Pi(u) = Pj(u)’ represents ‘completely-matched’, i.e.,
all the slots of Pi(u) and Pj(u) are identical, the relationship
‘Pi(u) ⊂ Pj(u)’ represents ‘partially-matched’, i.e., all slots of
Pi(u) are also slots of Pj(u) but the reverse is not true, and the
relationship ‘Pi(u) ⊄ Pj(u)’ represents ‘mismatched’ with
insertion or substitution errors, i.e., some slots of Pi(u) are not
slots of Pj(u). The relationships ‘partially-matched’ (⊂ ), and
‘mismatched’ (⊄ ) are separately considered, because the
insertion or substitution errors (mismatched) usually lead to
misunderstandings which either make the dialog fail or need to
be corrected by more and complicated dialogs, while pure
deletion errors (partially-matched) usually only lead to
incomplete understanding. The classification processes in Figure
2 have two layers. For each utterance u the reference slot
sequence Pr(u) and transcription slot sequence Pt(u) are first
compared in the upper layer. If Pr(u) ⊄ Pt(u), ‘the quality of the

word graph’ is really poor. If Pr(u)⊂ Pt(u) or Pr(u) = Pt(u), Ph(u)
and Pr(u) are then compared in the lower layer. The seven
utterance clusters obtained in Figure 2 is thus:

utterance u transcription text

Figure 1. The proposed framework for performance evaluation
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A1={u: Pr(u) =  Pt(u) and Ph(u) ⊄ Pr(u) }

B1={u: Pr(u) = Pt(u) and Ph(u) ⊂ Pr(u) }
C1={u: Pr(u) = Pt(u) and Ph(u) = Pr(u) }
A2={u: Pr(u) ⊂ Pt(u) and Ph(u) ⊄ Pr(u) }

B2={u: Pr(u) ⊂ Pt(u) and Ph(u) ⊂ Pr(u) }
C2={u: Pr(u) ⊂ Pt(u) and Ph(u) = Pr(u) }
A3={u: Pr(u) ⊄ Pt(u) }

In this way, different types of errors can be well classified. For
example, the cluster A3 consists of all utterances that always lead
to misunderstandings due to defected word graphs. The cluster B1,
on the other hand, consists of the utterances for which complete-
understanding is in principle possible (Pr(u) = Pt(u)), but not
achieved (Ph(u) ⊂ Pr(u)) because of poor acoustic and
linguistic scores. Based on this clustering scheme, we can further
define the following sets:

Scomp= C1 (set of complete-understanding)
Spart= B1+ B2+ C2 (set of partial-understanding)
Smis= A1 + A2+ A3 (set of misunderstanding)
Scorr= Scomp+ Spart (set of correct understanding)
Serr= Smis +Spart= A1+ A2+ A3+B1+ B2+ C2 (error set)

Furthermore, some meaningful understanding metrics can be
defined as follows.

The errors occurring in the different clusters in the error set Serr

can be further analyzed, which will be discussed in the next
section.

4. ERROR ANALYSIS
Unlike the error analysis usually performed in large vocabulary
speech recognizers [3], the analysis for understanding errors here
emphasizes on the reference path for comparison rather than the
transcription path. In other words, instead of paying great
attention to analyzing the differences between the hypothesis
path and the transcription path, here in this approach the

differences between the hypothesis path and the ‘upper bound’
reference path are analyzed with more attention. This is because
the function of the graph search here is not to find the
transcription path, but instead to achieve best possible
understanding out of the given word graph. This is also the way
to separate the effect of a defected word graph from other
understanding mechanism. First of all, two clusters A3 and C2

should be used to analyze the acoustic front end module and/or
reestimate the acoustic models, because A3 is the set with
seriously defected word graphs, and the graph search performed
on utterances in C2 are in fact completely correct. Excluding the
set C1 with completely correct processing, further error analysis
can be performed on the four clusters of utterances: A1, A2, and B1,
B2. Two very useful parameters Sa and Sl are first defined for each
utterance as follows:

Sa = Sa,r - Sa,h ,  Sl = Sl,r - Sl,h

where Sa,h and Sl,h are the acoustic recognition and language-
modeling scores for the hypothesis path respectively, and Sa,r and
Sl,r are the acoustic recognition and language-modeling scores of
the reference path respectively. By normalizing with the scores
for the hypothesis path, the scores Sa and Sl represents the
differences between the hypothesis path and the ‘upper bound’
path in terms of the graph search. They have also been
normalized in such a way that the values of Sa and Sl are
comparable and additive. Using (Sa ,Sl) as the coordinates, each
utterance in the set A1, A2, B1, B2 can be located on an error plane
as shown in Figure 3. Different types of errors can be easily
identified by the error regions defined on the error plane in
Figure 3. Region 3 in Figure 3, for example, is the region
enclosed by the lines Sa+ Sl =0 and Sa =0, is the region in which
the reference path has a better acoustic score (Sa >0), but loses in
the total score (Sa + Sl <0) due to poor language-modeling score.
Therefore, the utterances located into region 3 can be used to
update the language models, etc. In this way, all utterances with
understanding errors can be properly analyzed, and the real
source causing each of the errors can be easily identified. It
should be pointed out that the language models should be
updated by not only the transcription texts but the reference paths,
so as to improve the grammar coverage.

hypothesis path
without n-gram with n-gram

reference path

 As     68.34%     71.28%     74.67%
 Rmis     37.60%     24.30%     19.44%
 Rpart      7.42%     12.53%     13.55%
 Rcomp     54.99%     63.17%     67.01%
 Rcorr     62.40%     75.70%     80.56%

Table 1. Understanding rates and slot accuracy for the example
  experiment
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Figure 3. Error analysis based on the error plane
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A1 A2 A3 B1 B2 C1 C2 Total
Understanding type mis mis mis partial partial complete partial

 # of sentences    41    30    76     7     0   215    22   391
 # of slots    64    84   134    14     0   318    65   679
 # of slot errors    45    37    92     7     0     0    34   215

hypothesis paths
without n-gram

 error rate contributions   6.63%   5.45%  13.55%    1.03%   0.00%   0.00%   5.01%  31.66%
 # of sentences 15 4 76 1 0 247 48 391
 # of slots 21 10 134 2 0 373 139 679
 # of slot errors 18 10 99 1 0 0 67 195

hypothesis paths
with n-gram

 error rate contributions 2.65% 1.47% 14.58% 0.15% 0.00% 0.00% 9.87% 28.72%

Table 2. Distributions of hypothesis paths for their respective clusters

A1+A2+B1+B2A3 C2 Region 1 Region 2 Region 3 Region 4
Total

error sources.
defected

word graph
 defected

word graph
poor acoustic

score
poor acoustic

and LM scores
poor LM

score
search
error

  # of sentence 76 48 7 13 0 0 144
  % of sentence 52.78% 33.33% 4.86% 9.03% 0.00% 0.00% 100.00%
  # of errors 99 67 10 19 0 0 195
  % of errors 50.77% 34.36% 5.13% 9.74% 0.00% 0.00% 100.00%

Table 3. Error analysis for the data with n-gram language models

5. AN EXAMPLE
The above evaluation and error analysis scheme was applied to a
train ticket reservation system, which provides the user with a
spoken dialogue interface in Mandarin Chinese such that the train
schedule information retrieval and ticket reservation can be easily
performed with voice. The acoustic front end is a key phrase
spotter [4] which generates key phrase graphs, while the
language understanding module includes a hierarchical tag-graph
search [5], in which the n-gram language models are used and the
tag sequence with associated parsing trees is generated for
semantic processing. 391 utterances in 45 real dialogs generated
by four male and four female speakers were used for the test in
the development phase of the system. The various understanding
rates as defined in section 3 together with the slot accuracy for
the hypothesis paths (with and without language models) and the
reference paths are shown in Table 1. As shown in the table, the
74.67% reference path slot accuracy constrains the overall
sentence understanding rate to 80.56%. The improvement of slot
accuracy for the hypothesis paths by n-gram language models,
from 68.34% to 71.28%, is not significant because the defected
word graphs have seriously limited the functions of the language
models, although the slot accuracy of 71.28% is not too far from
the ‘upper bound’ of 74.67%. The detailed distributions of all
utterances in different clusters and corresponding test data are
shown in Table 2. The n-gram language models, as shown in the
table, have reduced the numbers of errors in the clusters A1, A2

and B1, while increased that in A3. This is because the utterances
in cluster A3 with seriously destroyed word graphs get no
benefits from the n-gram constraints. Furthermore, the reduction
of error sentences in the clusters A1, A2 and B1 leads to the
increase of correct and partial understanding sentences in the
clusters C1 and C2. Finally, the sources causing the understanding
errors with n-gram language models applied are analyzed in
Table 3. It can be found in Table 3 that in this case 50.77% of the
understanding errors come from defected word graphs (A3),
which lead to fatal misunderstanding errors, while 34.36% of the
understanding errors come from imperfect word graphs (C2),

which are not very serious because the ‘upper bound’ reference
paths with partial understanding are achieved. The other 14.87%
of the understanding errors are due to poor acoustic and/or
language modeling scores. Though no search errors are observed
in this case, the approach proposed here is able to handle them if
any search errors are identified.

6. CONCLUDING REMARKS
It’s really difficult to evaluate a speech understanding system and
analyze the different types of errors precisely. The traditional
metrics developed for speech recognition are helpful but not
necessarily able to provide a direct insight into the understanding
mechanism, while the slot accuracy can’t indicate how and why
the understanding errors occurred. In this paper, a best-matched
path is derived from a target-given graph search, and a
framework for performance evaluation and error analysis is
proposed accordingly. This framework has the potential to
become powerful tool for the design, analysis and evaluation of
speech understanding systems.
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