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ABSTRACT

This paper presents anew, fast algorithm for finite-length min-
imum mean square error (MMSE) equalizers. The research ex-
ploits asymptotic equivalence of Toeplitz and circulant matrices to
estimate Hessian matrix of a quadratic form. Research shows that
the Hessian matrix exhibits a specific structure. As a result, when
combined with the Rayleigh minimization algorithm, it provides
an efficient method to obtain the global minimum of constrained
optimization problem. A salient feature of this algorithm is that
extreme eigenvector of the Hessian matrix can be obtaind with-
out direct computation of the matrix. In comparison to the previ-
ous methods, the algorithm is more computationally efficient and
highly parallelizable, which makes the algorithm more attractive
for real time applications. The algorithm is applied for equaliza-
tion of discrete multitone (DMT) systems for asynchronous digital
subscriber line (ADSL) applications.

1. INTRODUCTION

In design of adaptive filters for signal processing applications, var-
ious optimality criteria can be used to obtain the optimum setting
of the adaptive filter. However, MMSE is considered to be the most
tractable technique which guarantees existence and uniqueness of
global optimum solution. The problem of finite-length MMSE fil-
tering has already been investigated in many literatures [1],[2]. In
[2], author applies the notion of MMSE filtering for system identi-
fication problems. Partial equalization of spectrally shaped chan-
nels is another fruitful application of MMSE filtering in communi-
cation and signal processing. Specifically, given a highly disperive
channel of lengthv, the objective is to design a finite-length time
domain equalizer (TEQ) to force the effective channel into a much
shorter filter known as target impulse response (TIR). In general,
the optimum solution to this problem is obtained from computing
the global minimum of a quadratic function. Due to the inherent
potential of quadratic forms to converge to the trivial solution, an
energy boosting constraint is applied to the problem. Among the
feasible constraint sets, unit energy constraint (UEC) and unit tap
constraint (UTC) have found more applications in communication
systems. In principle, decision feedback equalization (DFE) can
be categorized as a special class of MMSE equalizers under UTC.
A fast algorithm for MMSE equalizers has already been proposed
in [4]. However, the study conducted in [4] provided the optimum
solution subject to UTC. In this paper, a new fast iterative algo-
rithm for computing optimum setting of MMSE-UEC equalizers
is presented. Also note that equalization under UEC provides bet-
ter SNR in comparison to UTC [1]. The method makes use of

asymptotic equivalence of circulant and Toeplitz matrices to ob-
tain a closed form expression for the Hessian matrix. Addition-
ally, we show that any quadratic form can be computed efficiently
using the discrete Fourier transform (DFT) operation. When com-
bined with the Rayleigh minimization algorithm, it provides a fast
algorithm for computing coefficients of TIR and TEQ . The algo-
rithm provides the solution afterNb + 1 iterations and requires
O(Nf log2(Nf )) operations/iteration whereNf andNb + 1 are
the length of TEQ and TIR, respectively. The rest of this paper is
organized as follows. In section 2 an overview of MMSE approach
is presented. In section 3 few proporties of Hessian matrix are de-
rived. Based on these derivations, a new iterative algorithm for
MMSE-UEC is proposed. The complexity of algorithm is com-
pared against the standard matrix inversion method. Finally, in
section 4 the algorithm is applied to impulse response shortening
of DMT systems.

2. MMSE EQUALIZATION

This section presents an overview of the MMSE equalization problem.1

Block diagram of the equalizer studied in this paper is depicted
in figure 1. The channel response is modeled as a discrete time
FIR filter, expressed byh = fh[0];h[1]; � � � ;h[v]g wherev is the
channel spread. The channel response represents the combined
effect of the transmit and receive filters as well as the channel
impulse response. Input is an independent identically distributed
random sequence with power of�2x. In MMSE approach, equal-
izer taps are set such that the residual error between output of TIR
and TEQ filters is minimized in the mean square sense. MMSE
equalization can be viewed as a quadratic optimization problem in
which the optimum settings for the TIR and TEQ filters are ob-
tained from the following equations

bopt = arg minb b
�

R�b (1)

w = �2xRyy
�1
H�bopt (2)

whereR� is the Hessian matrix given in

R�
def
= �2xINb+1 � �4xH

�

�R
�1
yyH� (3)

and

Ryy = �2xHH
� +Rnn

1Throughout the paper, symbols� ; � ; < and ~: ; represent element
by element vector multiplication, linear convolution, real and Fourier trans-
form operations respectively. Also matrices and vectors are represented by
uppercase and lowercase bold characters, respectively.
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Figure 1: Block Diagram of MMSE Equalizer
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In the above equations,� is the decision delay involved with

the TIR and�
def
= Nf + v �Nb � 1. Also matricesI,0 andRnn

represent the identity,zero and noise autocorrelation matrices, re-
spectively. Recall that in the presence of UEC, the optimization
problem given in (1) can be viewed as minimization of Rayleigh
quotient of matrixH�. With this idea in mind, we apply the iter-
ative algorithm proposed in [5] to obtain extreme eigenvalue (vec-
tor) of the Hessian matrix. Basically, this algorithm applies the
conjugate-gradient method to find the minimum of second order
approximation of Rayleigh quotient. Rayleigh minimization al-
gorithm is widely used in subsapce tracking problems [7]. This
method, although iterative in nature, is guaranteed to converge af-
ter at mostNb+1 iterations. Robustness to matrix condition num-
ber is another noticeable feature of this algorithm [6]. Although
the Rayleigh minimization algorithm does not exploit matrix in-
version , it requires frequent computation of quadratic forms. In
the next section we describe an efficient method for computing the
quadratic terms, which eventually leads us to a fast algorithm for
computing coefficients of MMSE-UEC equalizers.

3. ITERATIVE ALGORITHM

The first step in reducing the complexity of the algorithm is to pro-
vide an efficient method for computing the inverse of the autocor-
relation matrix. In doing so, we approximate the Toeplitz matrix

Ryy = Tpltz(ryy[0 ]; ryy[1 ]; � � � ; ryy[Nf � 1 ])

with its asymptotic equivalent, known as circulant matrix

Cyy = Tpltz(ryy[0]; ryy[1]; � � � ; ryy[Nf=2];

ryy[Nf=2� 1]; � � � ; ryy[1])

Note that the argument of theTpltz operator is the first row of the
Toeplitz matrix. A distinct advantage of circulant matrix is that
it can be decomposed into the product of Fourier matrices and a
diagonal matrix as given by

Cyy = UNf
	 U

�

Nf

where

	 = diag( [0 ]  [1] � � �  [Nf � 1])

UNf
[k ; l ] = 1p

Nf

e
�j

2�kl

Nf k ; l = 0 ; 1 ; :::Nf � 1

 [k] =

Nf�1X
m=0

c[m]e
�j

2�km

Nf k = 0; 1; :::Nf � 1

and c[j] is the j’th element of the first row of matrixCyy.
Using orthogonal propoerties of Fourier matrices, we can estimate
the Hessian matrix as

R� = �x
2
INb+1 � �x

4
H
�

�U
�

Nf
	
�1
UNf

H� (4)

This closed form expression appears to attain fruitful propoerties
as we will illustrate shortly.
Property 1:
Given an arbitrary pair of vectorsp andq of lengthNb + 1, the
quadratic termp�R�q can be expressed as

p
�

R�q = p
�(�x

2
INb+1 � �x

4
H
�

�U
�

	
�1

U H�)q (5)

Define a dummy vectorc
def
=�x

2H�q. Due to the circular property
of matrixH� this vector can be written as linear convolution of
two vectors as expressed by

c [n] = �x
2

Nf�1X
l=0

h [�� n+ l]q [l] = �x
2
g [n] � q [n]

whereg [n]
def
= h [�n+�] . The term�x2UH�q = ~c is simply

the Fourier transform of vectorc and can be computed efficiently
as

�2xUH�q = ~c = �2x~g � ~q (6)

Note that in the above expression, we have assumed that the length
of TEQ exceeds that of TIR filter (Nf > Nb + 1). In applications
in which this constraint can not be tolerated, the long TEQ filter
can be well approximated by a pole-zero filter with fewer coeffi-
cients [3]. Applying equation (6) and Parseval’s equality to equa-
tion (5) results in a closed form expression for the quadratic term
p�R�q as given by

p
�

R�q =

Nf�1X
k=0

~z [k] ~p� [k] ~q [k] (7)

where the new vector~z is defined as

~z[k]
def
= �x

2 � �x
4 ~g[k]~g

�[k]

 [k]
(8)

This closed form expression given in (7) suggests performing the
Rayleigh minimization algorithm in the frequency domain. In
doing so, we need to represent the Fourier transform of vector
R�q as a function of vector~q. Wishing to avoid performing
the above operation in the time domain, we propose an efficient
method which performs the above operation using DFT.
Property 2:

For a vectors
def
= R�q, thei’th element can be represented as

s [i] = eiR�q =
1p
Nf

Nf�1X
k=0

~z [k] ~q [k] e
j
2�ki

Nf (9)



whereei is thei’th unit vector of lengthNb + 1. In deriving the
above equation, we have used the closed form expression given in
(7). Equation (9) appears to be thei’th element of IDFT of vector
~z � ~q. Hence, the vectors can be obtained from the firstNb + 1
elements of theIDFT (~z�~q). Consequently, Fourier transform of
the vectorR�q can be obtained by performing DFT operation on
the vectors. These two properties along with Parsevalprovide us
an efficient algorithm as we will explaingin the subsequent section.

3.1. Fast Algorithm

� Initialization:
Starting from an aribitrary normalized vector~b0, compute
the minimum eigenvalue estimate, residual error and de-
scent direction according to

�0 =

Nf�1X
k=0

~z [k] ~v0[k]

~r
0 = �0~b0 �~s0 ~p

0 = ~r
0

~v
0[k] = j~b0 [k] j2

� Iteration:
For i = 0 � � �Nb compute the TIR frequency response as

~b
i+1 = ~b

i + �i~pi �i =
�B +

p
B2 � 4CD

2D

D = �ib�
i
c � �ia�

i
d ; B = �ib � �i�id ; C = �ia � �i�ic

�a
i =

Nf�1X
k=0

~z [k] ~d1[k] ; �b
i =

Nf�1X
k=0

~z [k] ~d2[k]

�c
i =

Nf�1X
k=0

~d1[k] ; �d
i =

Nf�1X
k=0

~d2[k]

~d1[k] = (~pi[k])�~bi[k] ; ~d2[k] = (~pi[k])�~pi[k]

Compute the minimum eigenvalue estimate, residual error, descent
direction and normalized TIR vector according to

�i+1 =
1

� i+1

Nf�1X
k=0

~z [k] ~vi[k] ; ~r
i+1 =

�i+1~bi+1 �~si+1
� i+1

~p
i+1 = ~r

i+1 + �i~pi ; ~b
i+1 =

~bi+1

� i+1

where

�i =

PNf�1

k=0 ~z[k] (~ri+1[k])�~pi[k] + (kri+1k2)(�ci + �i�d
i)

�bi � �i+1 �d
i

~v
i+1 [k] =

~vi [k]

(� i)2
+ (�i)2~d2[k] + 2�i<(~d

1
[k])

� i+1 =
PNf�1

k=0 (~vi+1 [k])

Upon computing the optimum setting for TIR, TEQ’s coefficients
are obtained from equation (2). It is also worthwhile to remark that
the term�2xH�b in equation (2) can be computed efficiently using
equation (6). Table 1 compares the computational complexity of
the proposed method against the standard matrix inversion method.

Power Proposed
iteration algorithm

Hessian matrix N2
f (Nb + 1) —–

Computation +Nf (Nb + 1)2

Min. eigen. O((Nb + 1)3) O(Nf log2Nf )
Computation per iteration
Sensitivity to Highly Robust
condition No. sensitive
Other Requires Parallelizable,
Features matrix inversion requires largeNf

Table 1: Comparison Between Proposed Method and Standard
Power iteration Algorithm

4. SIMULATIONS AND PERFORMANCE EVALUATION
OF THE ALGORITHM

In this section we apply the proposed algorithm for equalization
of DMT in ADSL environment. A series of simulations are per-
formed on 2 kft, 26 gauage (AWG) wire line sampled at 2.208
MHz. The power spectral density of near-end crosstalk (NEXT)
noise is generated by exciting the NEXT coupling filterjHx(f)j2 =
kNEXT f

3=2 by a white Gaussian noise with power of 10mW. Un-
less specified,kNEXT is fixed to10�13. Also there is an AWGN
with power of -30dBm across the two sided spectral bandwidth.
Decision delay is set to the optimum delay obtained from MMSE-
UEC .Unless specified, transmit power is set such that the matched
filter bound (MFB = jjhjj2�2x=�2n) of 15 dB is achieved at the
receiving point. As a performance measure, we compute signal
power to MSE (SNR = �2x=b

�R�b) to evaluate the perfor-
mance of the methods. Throughout the simulations, performance
of the proposed method is compared against MMSE-UEC method.
The following points can be inferred from the plots.

� The gap between exact solution and proposed algorithm re-
duces as the length of the TIR filter increases (Figure 2).
This is due to the fact that the Rayleigh minimization al-
gorithm provides more exact solutions as dimension of the
Hessian matrix increases.

� As long asNf is large enough to satisfy the asymptotic
equivalence of Toeplitz and circulant matrices, the proposed
algorithm provides a robust solution for various values of
Nf .

� Performance of the algorithm is not influenced by the spec-
trum of the noise. As is shown in Figure (4) Signal to MSE
is constant over a large range ofKNEXT .

� Signal to MSE is a linear function of signal power (MFB).
This is a favorable characteristic, as there would be no lim-
itation on the dynamic range of transmit power.

5. CONCLUDING REMARKS

We have developed a novel fast algorithm as a straightforward ap-
plication of Rayleigh minimization approach to solving the opti-
mum MMSE-UEC equalization problem. Its structure was chosen
to allow the use of the DFT operation which makes the algorithm
highly parallelizable. The proposed method can be customized to
provide a balance between performance and computational com-
plexity. Simulation results in this paper show that the numerical
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Figure 2: Performance with Different TIR Lengths
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Figure 3: Performance with Different TEQ Lengths

complexity in the minimum eigenvector estimation can be reduced
considerably by exploiting the proposed algorithm, without signif-
icant loss in the performance.
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