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ABSTRACT
The conventional search algorithms for block matching motion
estimation reduce the set of possible displacements for locating
the motion vector.  Nearly all of these algorithms rely on the
assumption: the distortion function increases monotonically as
the search location moves away from the global minimum.
Obviously, this assumption essentially requires that the error
surface be unimodal over the search window.  Unfortunately,
this is usually not true in real-world video signals.  In this paper,
we formulate a criterion to check the confidence of unimodal
error surface over the search window. The proposed Confidence
Measure of Error Surface, CMES, would be a good measure for
identifying whether the searching should continue or not.  It is
found that this proposed measure is able to strengthen the
conventional fast search algorithms for block matching motion
estimation.  Experimental results show that, as compared to the
conventional approach, the new algorithm through the CMES is
more robust, produces smaller motion compensation errors, and
requires simple computational complexity.

1. INTRODUCTION

Motion estimation is an essential component of all modern video
coding standards [1-2].  It is included in these standards to
reduce the redundancy between successive frames of a video
sequence.  The method adopted to estimate the motion between
frames is the block matching algorithm (BMA) [3-10].  For the
full search algorithm (FSA) of BMA, a matching criterion
between every block in a search window from the previous frame
and the current block is calculated.  The most commonly used
matching criterion is the mean absolute difference (MAD) [7].
The FSA evaluates the MAD at all possible locations of the
search window to find the optimal motion vector.  Hence it is
able to find the best-matched block which guarantees to give the
minimal MAD.  On the other hand, it also demands an enormous
amount of computation.  Thus a number of fast search algorithms
[4-10] have been proposed, which seek to reduce the
computation time by searching only a subset of the eligible
candidate blocks.  These fast block motion estimation algorithms
include the n-Step Hierarchical Search algorithm (n-SHS) [7],
the conjugate directional search algorithm [8], the new three-step
search algorithm [9], the block-based gradient descent search
algorithm (BBGDS) [10] and many variations.  These algorithms
reduce the number of computations required by calculating the
MAD matching criterion at positions coarsely spread over the
search window according to some pattern and then repeating the
procedure with finer resolution around the position with the
minimum MAD found from the preceding step.  Nearly all of
these algorithms rely on the assumption: the MAD distortion

function increases monotonically as the search location moves
away from the global minimum [4].  Obviously, this assumption
essentially requires that the MAD error surface be unimodal over
the search window.  Unfortunately, this is usually not true in
real-world video signals.  As a consequence, the minimum MAD
found by these methods is frequently higher than that is produced
by the FSA.  To prevent this, a simple but perhaps the most
reliable strategy is to measure the confidence of unimodal error
surface over the search window.  In this paper, the new
Confidence Measure of Error Surface, CMES, is proposed and it
becomes a good criterion for determining the continuity for the
searching in the block matching motion estimation algorithm.
The new algorithm developed in this paper is based on the
verification of this newly defined confidence measure, that is
used to identify whether the searching would continue or not.

The rest of this paper is organized as follows. In Section 2, we
present an in-depth study on the MAD error surface. Based on
the studies in Section 2, we formulate the proposed confidence
measure into the search window and propose a fast search
algorithm through the confidence measure for block matching
motion estimation in Section 3.  In Section 4, some analysis on
the algorithm’s complexity and performance will be presented.
Finally, conclusions are drawn in Section 5.

2. THE MAD ERROR SURFACE
Suppose that the maximum motion in the vertical and horizontal
directions is ±W, there are thus (2W+1)2 candidates in total to be
checked if the full search method is used, each corresponding to
a checking point in the search window.  The MAD values
resulted from these checking points form an error surface
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where the block size is taken as N × N, (u,v) denotes the position
of the candidate motion vector, and It(⋅,⋅) and St-1(⋅,⋅) refer to the
blocks in the current frame(tth frame and in the reference frame
((t-1)th frame) that are to be compared.

The statistical behaviour of the MAD error surface has a
significant impact on the performance of the fast search
algorithm for block matching motion estimation.  For the surface
as shown in Fig. 1(a), the MAD error decreases monotonically as
the search location moves toward the global minimum value.  It
implies that a simple fast search algorithms such as the n-SHS
[9] and the BBGDS [10] would require a small number of
searches to determine the global optimum position for this block.
For the surface as shown in Fig. 1(b), it contains a large number
of local minima.  Almost all conventional fast algorithms have



explicitly or implicitly assumed [4] that the error surface is
unimodal over the search window.  As a consequence, it is
unlikely that the previously described fast search algorithms
would converge to the global minimum.  In other words, the
search would easily be trapped at a local minimum.  For the
surface in Fig. 1(c), there is no need to find the global minimum
position since any of the local minimum positions will
correspond to a satisfactory prediction block as E(u,v) is
uniformly small.  The new algorithm presented in this paper
explores the property of this important behaviour in order to
optimize the performance of the motion estimation.

(a)

(b)

(c)

Figure 1. MAD Error Surface for three different blocks.

3. RELIABLE SEARCH ALGORITHM
THROUGH THE CMES

The search algorithm presented in this paper can best be
described as an extension of the Block-Based Gradient Descent
Search (BBGDS) algorithm [10].  Let us recall that in the first
step of the BBGDS algorithm, search is done only around the
center checking point.  If the optimum is found at the center, the
procedure stops.  Otherwise, further search is done around the
point where the minimum has just been found.  The procedure
continues until the winning point is a center point of the
checking block (3×3 checking points) or the checking block hits
the boundary of the predefined search range [10].  The procedure
is illustrated in Fig. 2, where the motion vector (3,-4) is found.
Of course, the BBGDS algorithm relies on the assumption that
the MAD measure decreases monotonically as the search position
moves closer to the optimum position.  It can easily be trapped
into the local minimum if the error surface is similar to Fig. 1(b).

Let us use Fig. 3 to give a clearer account for this phenomenon.
In Fig. 3, it shows a nonunimodal surface due to many reasons
such as the aperture problem, the textured (periodical) local
image content, the inconsistent block segmentation of moving
object and background, the luminance change between frames,
etc.   In the first step of the BBGDS algorithm, the center point in
the checking block wins.  It will stop the searching process and a
local minimum will be found.  However, it is seen that the global
minimum is located at the far side of the winning point and the
MAD value of the winning point is significantly larger than that
of the global minimum.  It will degrade the quality of the motion-
compensated prediction frame.    For the new BBGDS algorithm,
a similar procedure is conducted.  In order to maximize the
possibility for finding the global minimum in the situation like
Fig. 1(b), it is necessary to determine whether the winning center
of the current checking block be identified as the “final winner”.
Thus, a Confidence Measure of Error Surface (CMES) is
proposed to prevent an unsuitable termination of the search being
misled by insufficient information.  In other words, the CMES is
used to determine the continuation of the search by enlarging the
checking block according to the superiority of the best-matched
center position to others in the current checking block.  Let us
define the CMES as follows:
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where l is the size of the checking block; Emin(u,v) and
E(u+i,v+j) are the smallest and other values of the MAD of the
checking block, respectively.   Values of the CMES can reflect
the statistical behaviour of the error surface in the checking
block.  If the CMES is close to 0, it means that it is insufficient to
make sure that this center point is a winner.  That is, the best-
matched center position in the checking block is probably a local
minimum, and hence the size of the checking block, l, is
increased to further evaluate the behaviour of this enlarged error
surface, as depicted in Fig. 4.  On the other hand, if the CMES is
far away from 0, it indicates that the center point is probably
located at the global minimum.
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Figure 2. Example of the BBGDS search procedure,
where motion vector (3, -4) is found.
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Figure 3. A nonunimodal error surface sampled by
checking block.
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Figure 4. Reliable search through the CMES.

Now by using this CMES, more search positions are allowed in
search windows which contain more local minimum values for
error surface than in search windows which have monotonically
decreasing values of error surface.  However, there is still some
inefficient use of the search positions.  Consider the search
window with the MAD error surface shown in Fig. 1(c).  The
modified BBGDS will find many local minima in this search
window, the value calculated for the confidence measure will be
small, and consequently, if only the CMES is used, many search
positions will be allowed for this search window.  It can be seen
however that the value of the MAD at all the local minimum
positions found will be very small, and hence, any of these
positions will correspond to a good prediction for the current
block.  Therefore, a MAD threshold detector is needed to limit
the number of search positions in the search window where the
MAD value at the local minimum positions has already reached
an acceptably small value.

According to the above discussion, a reliable solution to
terminate the search process in the BBGDS is proposed.  The
details are given below:

If the minimum MAD point in the search step occurs at the
center of checking block and its value is smaller than an
acceptable error, MADthr, stop the search.  Let us refer this as
error-acceptable stop.

If the minimum MAD point in the search step occurs at the
center of checking block and the value of its CMES is larger than
a confident threshold, α, stop the search.  This refers to as CMES
verification stop.

The block diagram of the new BBGDS is shown in Fig. 5.
Clearly, if the CMES verification stop does not occur, the
checking block is enlarged as shown in Fig. 4, and it continues
this CMES verification of the new checking block until the
CMES is larger than α or the minimum MAD point is not in the
center.  Note that, in the latter case, the size of checking block
has to be reset to 1.

Initialize the checking block
centered at (0,0) with l =1

Evaluate the MAD values for all
points in the checking block

min. MAD at center?

error-acceptable stop?

CMES verification
stop?

Set the checking block
centered at the min.

MAD point and l = 1

Keep this checking
block center and
increase l by 1

Motion Vector

Yes

No

Yes

Yes

No

No

Figure 5. Block diagram of the new BBGDS algorithm

4. SIMULATION RESULTS
The algorithm introduced in this paper has been developed in
accordance with the statistical behaviour of error surface.  The
performance of the proposed algorithm has been tested for a
large variety of real image sequences, including “Table Tennis”
and “Football”.  Results of the performance of the block motion
vector estimation of the new BBGDS through the CMES and
some conventional methods are compared in terms of quality and
computational complexity.  Parameters MADthr and α for the
stopping criteria of our new BBGDS were set to 3000 and 0.3
respectively.  The maximum allowable displacement in both the x
and y directions was set to 15, and a block size of 16×16 has
been used.  We have also used the Mean Square Error (MSE) per
pixel as the measure of performance.



Fig. 6 shows the results of the MSE of the motion-compensated
prediction frames together with some traditional approaches for
the comparison.  In Fig. 6, there is a great increase in prediction
error of the n-SHS and the conventional BBGDS as compared
with that of the FSA.  It is because the probability of occurring
the situation like Fig. 1(b) is more often in the fast moving
sequences.  This situation makes an inappropriate choice in early
steps of the n-SHS, and the unreliable stop in searching of the
conventional BBGDS implies that such kind of algorithms are
more easily to be trapped in a local minimum.  However, our new
BBGDS can resolve the misleading stop of the searching by
evaluating the confidence measure of error surface, CMES.   As
shown in Fig.6, the new BBGDS through the CMES is
significantly better than that of the n-SHS and the conventional
BBGDS.  Also, we can see that the MSE performance of our
approach is very close to the FSA.  From Table 1, it is shown that
the new BBGDS requires only 2.1% to 2.5% complexity of the
FSA.  It is much better than the famous n-SHS and has a slight
increase in complexity as compared to the conventional BBGDS.

5. SUMMARY

In this paper, we have presented a thorough study on the error
surface behaviour of motion vector of video signals.  Then, we
propose a new measurement for the fast search algorithm design
and performance comparison.  It has been shown that the
Confidence Measure of Error Surface (CMES) is a criterion for
measuring the certainty to stop the searching process.  As the
unimodal error surface is checked in our approach, the searching
through the CMES is usually nonuniform so that it is able to best
adapt to the statistical behaviour of a particular video sequence.
This criterion naturally makes robust and fast motion estimation
possible.  We have tested the proposed CMES with the BBGDS
and found that, a speed-up of about 40-50 times is achievable as
compared with the Full Search Algorithm, and both algorithms
give similar performance.
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Table 1. The complexity of the algorithms.

Algorithms Table
Tennis

Football

FSA 100% 100%
n-SHS 3.19% 3.19%

Conventional BBGDS 1.42% 1.39%
New BBGDS through the CMES 2.13% 2.49%

(a) Table Tennis

(b) Football

Figure 6. MSE produced by different algorithms for
image sequences, the “Table Tennis” and the “Football”.


