
RADIX-4 FFT IMPLEMENTATION USING SIMD MULTIMEDIA INSTRUCTIONS

Kouhei Nadehara, Takashi Miyazaki and Ichiro Kuroda

C&C Media Research Laboratories, NEC Corporation
4-1-1, Miyazaki, Miyamae-ku, Kawasaki 216-8555, Japan

fnade,miyazaki,kurodag@ccm.CL.NEC.co.jp

ABSTRACT

In this paper, a fast radix-4 complex FFT implementa-
tion using 4-parallel SIMD instructions is presented. Four
radix-4 butterflies are calculated in parallel at all stages
by loading consecutive 4 elements into a register. At
the last stage, every 4 elements is packed into a register
and calculated in parallel. This regular data flow enables
higher parallelism and an overhead reduction in data for-
mat conversion. The implementation result on the V830R
processor, which has a 4-parallel SIMD-type multimedia
instruction set, achieves practical performance quite com-
petitive with high-end parallel DSPs. Multiply-accumulate
instructions with symmetrical rounding introduced to the
V830R processor are effective to maintain FFT accuracy.

1. INTRODUCTION

The Fourier transform is a method to convert the time do-
main input signals into the frequency domain. In the digital
signal processing field, the discrete Fourier transform (DFT)
of discrete-time signals is widely used for spectrum analy-
sis, voice recognition, and fast computation of block filters
etc. The fast Fourier transform (FFT) is employed in actual
implementations because the DFT is very computationally
intensive in theory [1].

As the FFT is a very multiply intensive algorithm, dig-
ital signal processors (DSPs), which integrate a hardware
multiplier on a single chip, have been employed for the
faster FFT. Recently, many general purpose microproces-
sors have introduced a hardware multiplier and associated
signal processing instructions to enhance host-based sig-
nal processing capabilities such as software compression
and decompression of audio and video signals [2]. Fur-
thermore, some microprocessors have introduced “single
instruction stream-multiple data streams (SIMD)” instruc-
tions for higher multimedia signal processing performance,
which performs parallel calculation on packed data [3, 4, 5].
In these processors, for example, one SIMD instruction can
deal with four halfword (16-bit) operands stored in 64-bit
registers in parallel.

Some microprocessor vendors have released the FFT
implementations on their SIMD instruction sets. Intel has
shown an example of a radix-2 complex FFT implemen-

tation using their MMX instruction set in the application
note [6]. It stores both real and imaginary parts in a single
register. However, this irregular data structure leads to data
format conversion overheads and a limitation in parallelism.
Sun Microsystems provides a multimedia library includ-
ing radix-2 and radix-4 FFT implementations using their
VIS instruction set, but its source codes and performance
evaluation has not been disclosed [7].

In this paper, a fast decimation-in-frequency radix-4
complex FFT algorithm for general purpose processors with
SIMD instructions, and the implementation example on the
V830R processor have been presented. In this algorithm,
all butterflies can be calculated in 4-parallel by introducing
a separate procedure for the last butterfly stage. In addi-
tion, it is shown that multiply-accumulate instructions with
symmetric rounding greatly reduce computational errors.

2. PROCESSOR ARCHITECTURE

The V830R processor is an embedded 32-bit RISC for low-
power, low-cost multimedia systems [5]. This processor is
comprised of a 32-bit integer pipeline and a 64-bit multime-
dia coprocessor. This processor has two-way superscalar
instruction issue logic. A multimedia instruction and a fol-
lowing integer instruction can be executed simultaneously.

The coprocessor performs SIMD-parallel operations
on packed data in thirty-two 64-bit multimedia regis-
ters. For example, thevmacr instruction performs four
16-bit multiply-accumulate (MAC) operations simultane-
ously (Figure 1 (a)). Calculations are performed between
operands at the same halfword positions in different regis-
ters. Therefore, the SIMD parallelism is applicable to 4 sets

0141516
SS

S Symmetric
bit shift

31

Rounding

(a) "vmacr r1, r2, r3"

64bits 16b

Sign

Symmetric Rounding

r1

r2

r3

r3 (b) Multiplication with

30

Figure 1: SIMD Multiply-Accumulate Instruction Example.



of data which follow exactly the same signal flow.
Unlike conventional microprocessors, the V830R pro-

cessor has introduced DSP-style MAC instructions as shown
in Figure 1 (b) to prevent error accumulation. A 16-bit mul-
tiplication results in a 32-bit value, but most significant two
bits basically have the same sign (S) bits. Therefore, bit
31 is removed as redundant to gain accuracy by 1-bit. In
addition, lower 15-bit is not truncated but rounded symmet-
rically to zero. When these operations cause an overflow,
the result is saturated.

3. RADIX-4 FFT

The radix-4 FFT is less computationally demanding
than the radix-2 FFT. The radix-4 FFT is also faster than
the split-radix FFT on processors with 1-clock throughput
MAC instructions such as V830R, because data address
calculations in the radix-4 FFT are simpler [8].

In the radix-4 FFT, the N-point DFT is first decomposed
into four N/4-point DFTs. Then, each N/4-point DFT
is decomposed again into four N/16-point DFTs. These
decompositions are applied recursively until each DFT size
is reduced to 4. A 4-point DFT is called a “radix-4 butterfly,”
and is calculated directly following the signal flow shown
in Figure 2. In this figure, “W” means a complex coefficient
called a “twiddle factor.” In later sections, a simplified
notation shown in Figure 3 is used for a radix-4 butterfly to
focus on input and output of the butterfly.

The radix-4 FFT reduces computational loads dramati-
cally. In N-point FFT computational complexity increases
proportional toN2 in theory. In contrast, the N-point radix-
4 FFT comprises oflog4N stages, each of which includes
N/4 butterflies. Therefore, computational complexity is
proportional toNlog4N in the radix-4 FFT.

Radix-4 FFT is highly data parallel. At each stage,
N/4 butterflies can be calculated independently. However,
due to restrictions of the SIMD parallelism, it should be
determined carefully which butterflies to be calculated in
parallel.

3
N

N

-1

0
N

1

21
N

j

-j
-1

1j

-1

n = 0, 1, ..., N/4 - 1

1
-1

W

W

W

W

1
1
1 1

1
-j

Y(n+3N/4)

Y(n+N/2)

Y(n+N/4)

Y(n)

X(n+3N/4)

X(n+N/2)

X(n+N/4)

X(n)

Figure 2: Radix-4 Butterfly Signal Flow.

Y(n+3N/4)

Y(n+N/2)

Y(n+N/4)

Y(n)X(n)

X(n+N/4)

X(n+N/2)

X(n+3N/4)

Figure 3: Simplified Radix-4 Butterfly.

4. SIMD PARALLEL IMPLEMENTATION

Parallelization of the radix-4 complex FFT is shown, taking
the 64-point, 16-bit fixed-point FFT as an example. This
FFT comprises of 3 stages of radix-4 butterflies.

The data structure in the proposed implementation is
shown in Figure 4. The real part(Xr) and the imaginary
part (Xi) of input X are stored in separate arrays to load
four consecutive real or imaginary values to a 64-bit register
with a single load instruction.

4.1. The First and Second Stages

The proposed fast radix-4 FFT implementation deals with
consecutive 4 butterflies in parallel by loading consecutive
4 elements in a coprocessor register at stages except the last.

Figure 5 shows an example of 4-way parallelization at
the 1st stage of the 64-point radix-4 FFT. In the 64-point
FFT, distances between elements referred by a butterfly at
the 1st stage is 16 (N/4 in Figure 2). For example, the 1st
butterfly requires X[0], X[16], X[32] and X[48], and the
2nd butterfly requires X[1], X[17], X[33] and X[49], and so
on. Therefore, if elements X[0�3], X[16�19], X[32�35]
and X[48�51] are packed into coprocessor registers, 4
butterflies shown by the solid lines in Figure 5, which
follow the same signal flow, can be dealt in parallel using
SIMD instructions at the 1st iteration.

Outputs of 16 butterflies at the 1st stage connect to inputs
of 16 butterflies at the 2nd stage. At the 2nd stage, distances
between elements referred by a butterfly is 4. Therefore,
if elements X[0�3], X[4�7], X[8�11] and X[12�15] are
packed into coprocessor registers, 4 butterflies can be per-
formed in parallel using SIMD instructions.

In the data structure shown in Figure 4, consecutive 4 real
or imaginary elements necessary in a parallel calculation of 4
butterflies can be accessed with a single load instruction. In
contrast, as twiddle factors may not be stored in consecutive
addresses, they must be packed into a register using 4 load
and format conversion instructions. Therefore, sine and
cosine values for twiddle factors are stored in pairs to access
a real and an imaginary part of the required twiddle factor
with a single load instruction.

sin(0)
cos(0)
sin(m)
cos(m)
sin(2m)
cos(2m)

sin{(N-1)m}
cos{(N-1)m}

W(i)
N
π2

m=

Coprocessor
Register

64b

Load
/Store

Re X(i)

Xr[0]
Xr[1]
Xr[2]

Xr[N-1]

Xr[3]

16b

Xi[0]
Xi[1]
Xi[2]

Xi[N-1]

Im X(i)

Xi[3]

Figure 4: Data Structure for Inputs and Twiddle Factors.



14]

13]

15] 15]

Xr,Xi[0]

Xr,Xi[1]

14]

13]

Xr,Xi[3]

Xr,Xi[2]

9]

11]

10]

Trans-
pose

Xr[1]

Xr[4]

Xr[2]
Xr[6]

Xr[3]
Xr[7]

Xi[2]
Xi[6]

Xi[3]
Xi[7]

Xi[1]
Xi[5]

Xi[12]
Xi[8]

Xi[0]
Xi[4]

Xr[12]
Xr[8]

Xr[0]
Xr[5]

11]Yr[2]
Yr[6]

Yr[3]
Yr[7]

Xi[2]
Xi[6]

Yi[3]
Yi[7]

Yi[1]
Yi[5]

Yi[12]
Yi[8]

Yi[0]
Yi[4]

Xr,Xi[12]

Xr,Xi[8]

Xr,Xi[4]

Yr,Yi[3]

Yr,Yi[12]

Yr,Yi[4]
Yr,Yi[8]

Yr,Yi[0]

10]

Yr[4]

Yr[1]Yr,Yi[1]

Yr[12]

Yr,Yi[2]
Trans-
pose

Yr[5]
Yr[0] 9]

Yr[8]

xr[9] Yr[8]Yr[9]Yr[10]Yr[11]

Yi[8]Yi[9]

Yi[14]

Yr[5]Yr[6]Yr[7]

Yi[15]

Yi[10]

Yi[7]

Yi[13] Yi[12]

Yi[11]

xi[3] Yi[2]xi[2]

Yr[4]

xr[8]

xi[1]

Yi[4]

xi[0]

Yi[5]

xr[3]

Yi[6]

Yr[0]Yr[1]Yr[2]Yr[3]xr[2] xr[1] xr[0]

xi[7] xi[6] xi[5] xi[4]

xr[7]

Yi[0]

xr[6] xr[5] xr[4]

xi[15] xi[14] xi[13] xi[12]

xr[15] xr[14] xr[13] xr[12]

xi[11] xi[10] xi[9] xi[8]

xr[11]

Yi[1]

xr[10]

Yi[3]

Yr[15] Yr[12]Yr[13]Yr[14]

(a)

64-bit
Coprocessor Registers

(b) (d)

Butterflies

(e)
(c)

Figure 6: Parallelization of the last Stage.

X(i)

1st Stage
xi[55]

xi[4]xi[5]xi[6]xi[7]

xi[0]xi[1]xi[2]xi[3]

xr[55] xr[54] xr[53] xr[52]

xr[51] xr[50] xr[49] xr[48]

xr[20]xr[23] xr[22] xr[21]

xr[19] xr[18] xr[17] xr[16]

xr[7] xr[6] xr[5] xr[4]

xr[2]xr[3] xr[1] xr[0]

xr[39] xr[38] xr[37] xr[36]

xr[35] xr[34] xr[33] xr[32]

2nd Iteration
1st Iteration

xi[52]xi[53]xi[54]

xi[21]xi[22]xi[23] xi[20]

xi[16]xi[17]xi[18]xi[19]

xi[36]xi[37]xi[38]xi[39]

xi[32]xi[33]xi[34]xi[35]

xi[48]xi[49]xi[50]xi[51]

35
34
33
32

23
22
21
20
19
18
17
16

7
6
5
4
3

36
37

2
1
0 0

1
2
3
4
5
6
7

64 bits

23
22
21
20
19
18
17
16

39
38
37
36
35
34
33
32

55
54
53
52
51
50
49
48

55
54
53
52
51
50
49
48

39
38

Figure 5: Parallelization of the 1st Stage.

4.2. The Last Stage

At the last stage, the parallelization method is different
from previous stages, because a radix-4 butterfly should be
performed between 4 consecutive elements. These 4 con-
secutive elements should be loaded to different registers,
because the processor does not provide instructions to per-
form calculations between operands at different halfword
positions in the same register.

As shown in Figure 6 (b), 4 real or imaginary elements
should be packed into a coprocessor register from every
4 elements in the array Xr or Xi. For example, X[0],
X[4], X[8] and X[12] should be stored in a single register.
This format conversion from memory image (Figure 6 (a))
is equivalent to a transpose of a 4� 4 matrix. In the
V830R processor, 16 elements packed in 4 registers can be
transposed easily with 8 format conversion instructions.

Table 1: Parallel Radix-4 FFT Performance on the V830R.
Point Inst. (Para.) Clocks Time

16 223 (50%) 168 0.8�s
64 1,219 (62%) 839 4.2�s
256 6,141 (66%) 4,093 20.5�s
1024 29,481 (68%) 19,257 96.3�s

Table 2: Performance Comparison of the 256-point FFT.
Processor MHz Algorithm Clocks Time

V830R/AV 200 Radix-4 4,093 20.5�s
PentiumII 233 Radix-2 5,522 23.7�s

TMS320C62x 200 Radix-2 4,225 21.1�s
TMS320C62x 200 Radix-4 2,763 13.8�s

After the transposition, 4 butterflies are calculated in
parallel with SIMD instructions. In the last stage, twiddle
factors are all 1, therefore butterflies are calculated with
SIMD additions and subtractions. Outputs of butterflies
should be transposed again to be stored in the array Xr or
Xi.

5. RESULTS

The parallel radix-4 FFT is implemented on the V830 pro-
cessor in assembly language. Instructions are scheduled to
exploit the two-way superscalar capability of the processor.
While calculating butterflies with SIMD instructions at the
64-bit coprocessor, data addresses which will be accessed in
the next iteration are calculated in advance at the free 32-bit
integer pipeline.

5.1. Performance

Performance of the proposed parallel radix-4 FFT im-
plemented on V830R is shown in Table 1. It does not
include cache miss penalties, because FFT software and its
working data set can fit in internal caches. For example,
256-point complex radix-4 FFT can be performed in 20.5�s
on the 200-MHz V830R processor. Parallel execution ratio
is as high as 66%. This shows that a simple superscalar
mechanism contributes to a considerable speedup.

Table 2 shows a performance comparison between con-
ventional and proposed implementations. Clock count is
reduced by 35% when compared with a conventional radix-2



�
�
�
�
�
�

�
�
�
�
�
�

��
��
��

��
��
��

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����������
����������
����������

����������
����������
����������

Load/Store
14 (22.6%)

Multiply
13 (21.0%)

Integer
35 (56.5%)

IntegerMultimedia
MAC

Multimedia
Integer

3 (15.8%) 4.75 (25.0%) 7.5 (39.5%)

62 Inst.
/Butterfly

19 Inst/Butterly

TI C62x

V830R/AV

Load/Store
4 (21.1%)

Figure 7: Radix-4 Butterfly Instruction Counts.

FFT on the Intel Pentium II processor [9]. The conventional
algorithm is based on radix-2, and employs an irregular
data structure which stores two sets of real and imaginary
part into a single multimedia register. This data struc-
ture seems to be suited to the MMX MAC which performs
X1�Y 1+X2�Y 2, but has a bad influence on performance
due to data format conversion overheads.

Texas Instruments TMS320C62x is a latest high-end
DSP with a 8-way “multiple-instruction streams, multiple-
data streams (MIMD)”-parallel capability [10]. When com-
pared with this 8-way parallel DSP, the radix-4 FFT on
V830R is slightly faster than radix-2 on TMS320C62x, but
slower than radix-4 on TMS320C62x by 32% [11] (Table 2).

Themain difference in execution times between TMS320-
C6x and V830R comes from the access time of twiddle fac-
tors. TMS320C6x can access twiddle factors in background
thanks to its high parallelism, but V830R has to spent 18.1%
of the total execution time to access and pack twiddle factors
into the SIMD format.

Figure 7 shows a comparison of average instruction
counts to perform a radix-4 butterfly. It shows SIMD
parallelism works very effective on the radix-4 butterfly,
as V830R, which has 4-way parallel SIMD instructions,
reduces the instruction count less than one third of the
TMS320C62x. In contrast, because TMS320C62x has
more flexible parallelism, these processors result in similar
radix-4 butterfly execution times. Therefore an average
calculation time of each butterfly is similar.

Therefore, it is shown that the multimedia coprocessor
enables the V830R general purpose microprocessor to have
a quite competitive signal processing performance with
high-end DSPs.

5.2. Precision

The MAC instructions with symmetrical rounding intro-
duced to V830R are very effective in reducing computational
errors. The errors are evaluated by comparing results cal-

MAE MSE

Rounding 4.8 19.5
Truncation 8.7 145.0

Table 3: Errors in 256-point FFT.

culated by fixed-point MACs with truncation or rounding to
double-precision floating point emulation.

Table 3 shows mean absolute errors (MAEs) and mean
square errors (MSEs) in 256-point complex radix-4 FFT
for random numbers between –128 and 128. This table
shows MSEs has been reduced to less than one seventh by
introducing DSP-style MAC instructions with rounding to
a general purpose processor.

6. CONCLUSION

A fast radix-4 complex FFT implementation suitable for
microprocessors with a 4-parallel SIMD instruction set has
been proposed. The implementation loads consecutive 4
real or imaginary elements into a register at stages except
the last. At the last stage, every 4 elements in a real or
an imaginary array are loaded into registers by a matrix
transposition. These data structure enable the processor to
deal with 4 butterflies in parallel at all stages. The algorithm
implemented on the V830R processor reduces clock count
by 35% in the case of 256-point FFT, when compared with
a conventional implementation.

7. REFERENCES

[1] C. S. Burrus and T. W. Perks, “DFT/FFT and Convolution
Algorithms,” Wiley Interscience, New York, 1985

[2] K. Nadehara, I. Kuroda, M. Daito and T. Nakayama, “Low-
Power Multimedia RISC,” IEEE MICRO, Vol. 15, No. 6,
pp.20–29, Dec. 1995.

[3] Linley Gwennap, “Intel’s MMX Speeds Multimedia,” Mi-
croprocessor Report, Vol. 10, No. 3, pp. 1, 6–10, Micro
Design Resources, Mar. 5, 1996.

[4] Marc Tremblay et al., “VIS Speeds New Media Processing,”
IEEE MICRO, pp. 10–20, Aug. 1996.

[5] K. Suzuki, T. Arai, K. Nadehara and I. Kuroda, “V830R/AV:
Embedded multimedia RISC processor,” IEEE MICRO, Vol.
18, No. 2, pp. 36-47, Apr. 1998

[6] “Using MMX Instructions to Perform Complex 16-bit FFT,”
Intel Application Note AP-555, Order No. 243040-001, Mar.
1996

[7] “mediaLib User’s Manual,” Sun Microsystems, Part No.
802-7799-04, Oct. 1997

[8] R. Meyer and K Schwarz, “FFT Implementation on DSP-
Chips — Theory and Practice,” Proc. ICASSP 1990, pp.
1503–1506

[9] “Signal Processing Library Performance Specifi-
cations,” hURL:http://developer.intel.com/design/perftool/-
PERFLIBST/spl/sp4spec.htmi

[10] “TMS320C62x/C67x CPU and Instruction Set Reference
Guide” Texas Instruments, Literature No. SPRU189C, Mar.
1998

[11] “TMS320C62x Assembly Benchmarks,”
hURL:http://www.ti.com/sc/docs/dsps/products/c6000/-
c62x/benchmk.htmi


