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ABSTRACT

In many Monte Carlo simulations, it is important to gen-
erate samples from given densities. Recently, researchers
in statistical signal processing and related disciplines have
shown increased interest for a generator of random vec-
tors with truncated multivariate normal probability den-
sity functions (pdf's). A straightforward method for their
generation is to draw samples from the multivariate normal
density and reject the ones that are outside the acceptance
region. This method, which is known as rejection sam-
pling, can be very ine�cient, especially for high dimensions
and/or relatively small supports of the random vectors. In
this paper we propose an approach for generation of vectors
with truncated Gaussian densities based on Gibbs sampling,
which is simple to use and does not reject any of the gen-
erated vectors.

1. INTRODUCTION

In signal processing the generation of samples from vari-
ous distributions is often needed [5]. Some existing meth-
ods include rejection sampling [3] and various Markov chain
Monte Carlo (MCMC) methods [2], [4]. In Gaussian noise
models, we often come across situations where samples from
truncated Gaussian densities are required. For example, in
autoregressive (AR) parameter estimation [6], [8], if Gaus-
sian noise and uniform priors (over the stability region) for
the AR parameters are assumed, the posterior is approx-
imately a truncated Gaussian. In such cases if rejection
sampling is used, whereby samples not in the acceptable
region are rejected, it is very ine�cient and the most time
consuming part of the simulation.

We propose here a Gibbs sampling approach, which is a
special MCMC sampling method, for drawing samples from
multivariate truncated Gaussian densities. For implemen-
tation of the Gibbs sampler, we need a transformation that
maps a univariate Gaussian random variable to a truncated
Gaussian one.

In Section 2 we discuss such transformation, which we
then exploit in the multivariate case, described in Section 3.
There we propose a Gibbs sampling scheme for generation
of n-dimensional truncated multivariate Gaussian variables
whose support is an n-dimensional cuboid. The support,
however, can be any convex region. In Section 4 we show
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simulation results that illustrate our approach. We also per-
form nonparametric tests on the drawn samples to further
substantiate that they are indeed distributed according to
the desired truncated Gaussian densities.

2. SAMPLING A TRUNCATED GAUSSIAN:

UNIVARIATE CASE

Suppose we want to generate samples from a univariate
truncated Gaussian random variable ~y with a support set
Rs �(a,b].

1 That is, we need a sample from

f~y(y) =

�
c�1(2��2)�1=2 exp(�(y� �)2=2�2); a < y � b
0; otherwise

(1)
where

c =

Z b

a

(2��2)�1=2 exp(�(x� �)2=2�2)dx: (2)

We denote the above density as TN(�; �2; a; b).
A simple method to do this is rejection sampling. We

generate samples x from the required Gaussian density and
discard the ones whose generated values are outside Rs.
But in cases where the probability mass above the support
region is small, the rejection rate becomes unacceptably
high, leading to a very ine�cient sampling scheme.

Here we present a procedure which does not discard
the samples x from the Gaussian density. It is based on
the idea of mapping x to y, where y 2 Rs, in such a way
that the mapped samples have the required density f~y(y).
Denote the mapping by y = g(x), where ~x is distributed as
N(�; �2). First we �nd the transformation g(�).

If F~x(x) and F~y(y) denote the cumulative distribution
functions (cdf's) of ~x and ~y respectively, then

F~y(y) =

(
0; y � a
c�1(F~x(y)� F~x(a)); a < y � b
1; y > b

(3)

and F~x(x) = �((x � �)=�), where �(�) is the cdf of the
standard Gaussian random variable. If g(x) is one-to-one,
we can write

F~y(y) = F~x(x): (4)

1~y represents a random variable, and y a value of ~y.
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Figure 1: Plot of the univariate transformation equation for
window (-3,0) for a standard normal random variable.

From (3) and (4) it follows that

c�1(F~x(y)� F~x(a)) = F~x(x): (5)

For the range a < y � b, we have

y = F�1~x (cF~x(x) + F~x(a))

= F�1~x (F~x(x)(F~x(b)� F~x(a)) + F~x(a)) : (6)

From (4) we deduce that F~y(y) = 0 when x = �1, and
F~y(y) = 1 when x = 1. If x = �1, we obtain from
(6) y = a, and if x = 1, y = b. Since (3) is the de-
sired cdf of ~y, we conclude that (6) is the transformation
g(x) which produces ~y from the Gaussian random vari-
able ~x. It is important to notice that g(x) is a compo-
sition of two strictly monotonically increasing functions,
g(x) = F�1~x (F~x(x)(F~x(b) � F~x(a)) + F~x(a)), and therefore
is also strictly monotonically increasing function and hence
one-to-one.

In summary, to get a sample from TN(�; �2; a; b), we
simply draw x from N(�; �2) and map it to y by g(x). Fig-
ure 1 shows an example plot of (6) for a = �3 and b = 0,
where ~x � N(0; 1).

3. MULTIVARIATE CASE { GIBBS SAMPLING

SCHEME:

Gibbs sampling is a Markov chain Monte Carlo (MCMC)
method for generation of samples from high dimensional
densities by drawing the samples from full conditional den-
sities [4]. In other words, to implement the Gibbs sampling
for an n-dimensional vector ~y, we need to �nd full condi-
tionals of its subvectors which are easy to sample from.

Let ~x � N(�;C) and ~yT = [~y1~y2 : : : ~yn] � TN(�;C;Rs);
2

where Rs =
Qn

i=1
Ri is the support of ~y with Ri = (ai; bi].

Denote by yT = [y1y2 : : : yn] a sample of ~y.
Note that,

f~y(y) =
f ~x(y)R

Rs

f~x(x)dx
; y�Rs: (7)

2Note that � and C are not the mean and the covariance

matrix of ~y.

We shall prove that the full conditionals f~yi(yijy�i), i =
1; 2; : : : ; n; where yT

�i = [y1 y2 : : : yi�1 yi+1 : : : yn],
are themselves univariate truncated Gaussian densities. We
have

f~yi(yijy�i) =
f ~y(y)

f ~y�i
(y�i)

=
f~y(y)R

bi

ai

f ~y(y)dyi
; y 2 Rs

(8)

and using (7), we can write

f~yi(yijy�i) =
f~x(y)R bi

ai
f~x(y)dyi

; y 2 Rs: (9)

Finally, from (9) the conditional density f~yi(yijy�i) may be
rewritten as

f~yi(yijy�i) =
f~x(yijy�i)R bi

ai
f~x(yijy�i)dyi

; y 2 Rs (10)

which is nothing but a truncated Gaussian pdf whose sam-
ples can be generated as shown in the previous section.

Now we present the Gibbs sampling scheme used to
produce samples from f~y(y): First, we get initial values

fy
(0)
i gni=2 from the support setRs and then for j = 1; : : : ;M

generate samples according to

f(y1 j y
(j�1)
2 ; y

(j�1)
3 ; : : : ; y

(j�1)
n ) �! y

(j)
1

f(y2 j y
(j)
1 ; y

(j�1)
3 ; : : : ; y

(j�1)
n ) �! y

(j)
2

...

f(yn�1 j y
(j)
1 ; : : : ; y

(j)
n�2; y

(j�1)
n ) �! y

(j)
n�1

f(yn j y
(j)
1 ; y

(j)
2 ; : : : ; y

(j)
n�1) �! y

(j)
n

(11)

where the arrows represent sampling from the correspond-
ing density. Note that each yi is sampled according to the
univariate scheme in Section 2.

A good set of initial values for the Markov chain is a
sample that corresponds to the maximum of f~y(y), where
y 2 Rs. It is easy to �nd this starting point because we
know the shape of the distribution. With this starting value
there is no need for burn-in period (in general required un-
til convergence to the equilibrium distribution is achieved)
except for the �rst few samples, after which the subsequent
draws become uncorrelated with the initial point.

4. SIMULATION RESULTS

We performed a goodness-of-�t test on the samples obtained
in the univariate case [1]. Assume we have n samples of a
univariate random variable ~y with a cdf F~y(y). We need to
test the hypothesis

H : F~y(y) = FT (y) (12)

where FT (y) is the cdf of a univariate truncated Gaussian
random variable. The alternative hypothesis is K, where

K : F~y(y) 6= FT (y): (13)
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Figure 2: Plot of FT (y)� � (| curve) and Fn(y) (-.- curve)
for TN(0; 1;�4;�3), and � = 0:01.
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Figure 3: Plot of FT (y5jy�5)� � (| curve) and Fn(y5jy�5)

(-.- curve) for the TN(0;C;
Q10

i=1
(�1; 1]), where cii = 1,

cij = 0:8, i 6= j, and � = 0:01.

The Kolmogorov statistic for testing the hypothesis H is
given by [1],

Dn = sup
y

jFn(y)� FT (y)j (14)

where Fn(y) = [number of yi � y]=n and n is the total
number of samples. We performed the Kolmogorov test for
n = 500 samples for di�erent acceptance regions as shown
in the Table 1, and signi�cance level � = 0:01. We conclude
that our hypothesis is not rejected in any of the cases. Fig-
ure 2 shows a plot of FT (y) � � (where � corresponds to
� = 0:01) and Fn(y) for TN(0; 1;�4;�3).

We repeated the test for the density f~y5(y5jy�5); where
yT
�5 = [y1y2 : : : y4y6 : : : y10]. The truncated Gaussian was

de�ned by TN(0;C;Rs) where the diagonal elements of C,
cii = 1, and all the o�-diagonal elements cij = 0:8. The

support region was Rs =
Q10

i=1
(�1; 1], and the signi�cance

level was � = 0:01. Thus, we wanted to verify if indeed the
conditional densities are truncated Gaussians as claimed in
the previous section. A result of the test is shown in Figure
3, and again it shows agreement with our claim.

To compare the e�ciencies of the rejection and Gibbs
sampling schemes, in Figures (4) and (5) we show scat-
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Figure 4: Rejection sampling for generating samples of
truncated Gaussian random variables. The acceptance re-
gion is indicated by the square.
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Figure 5: Gibbs sampling for the same random variable as
in Figure 4.

No. Acceptance Dn Acceptable
Region Value

1. (-3,0) 0.0295 0.0729
2. (-3,-2) 0.0421 0.0729
3. (-4,-3) 0.0422 0.0729

Table 1: Kolmogorov test for di�erent acceptance regions
for the univariate case TN(0; 1;�4;�3) and signi�cance
level � = 0:01:

Total Acceptance region
Samples (-1,1;: : : ;-1,1) (-4,-3;: : : ;-4,-3)

RS GS RS GS
30000 7993 30000 1 30000
100000 26583 100000 2 100000

Table 2: Number of generated samples of a 10-dimensional
TN(0;C;

Q10

i=1
(�1; 1]), where cii = 1, cij = 0:8 (i 6= j).
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Figure 6: Plot of the autocorrelations r̂yiyi(k), i =
1; 2; : : : ; 10, as functions of the lag k.
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Figure 7: Plot of the crosscorrelations r̂yiy1(k), i =
2; : : : ; 10, as functions of the lag k.

ter plots of two dimensional truncated Gaussians gener-
ated by rejection sampling and our method, where Rs =Q2

i=1(�3; 0]. Figure (4) shows visually the amount of re-
jection, where the square window is the acceptance region.

In continuing the comparison, with the two schemes, we
generated samples from a 10-dimensional truncated Gaus-
sian. The results shown in Table 2 are for two di�erent
acceptance regions. The column \Total Samples" indicates
the total number of samplings done, and the columns RS
and GS indicate the number of samples in the support set
of the truncated Gaussian density. From the table we see
that as the acceptance region slides into the low probability
region of the multivariate Gaussian random variable, the re-
jections of the rejection sampling scheme increase, resulting
in lesser and lesser e�ciency. On the other hand, the Gibbs
sampling scheme keeps all the generated samples. The dis-
crepancy in e�ciency of the two schemes increases with the
dimension of the generated random variables.

In many Monte Carlo simulations, we would like to use
samples which are independent of each other. The rejection
sampling scheme generates independent samples, but most
MCMC schemes like ours, generates samples which are cor-
related. To examine the correlation, we generated samples
from the 10-dimensional density de�ned above, and calcu-

lated the estimates of the autocorrelation and crosscorrela-
tion coe�cients of the individual random variables. Some
results are shown in Figures 6 and 7. In Figure 6 we see
the plot of the autocorrelations r̂yiyi(k); i = 1; : : : ; 10 and
in Figure 7 the crosscorrelations r̂yiy1(k); i = 2; : : : ; 10, as a
function of the lag k. We see that the correlations decrease
rapidly and become negligible for k � 5.

5. CONCLUSION

A procedure for generating samples from multivariate trun-
cated Gaussian random variables using Gibbs sampling has
been proposed. We see from the results that our scheme
is far more e�cient than the rejection sampling approach,
especially when the dimension of the multivariate density
is high and/or the acceptance region lies in a low proba-
bility region. This is because a large number of rejections
occur in rejection sampling scheme, whereas in the Gibbs
sampling scheme all the generated samples are in the ac-
ceptance region. The scheme is easy to implement and can
be generalized to other types of convex regions.
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