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ABSTRACT

The multi-arm bandit problem is widely used in schedul-
ing of traffic in broadband networks, manufacturing systems
and robotics. This paper presents a finite dimensional opti-
mal solution to the multi-arm bandit problem for Hidden
Markov Models. The key to solving any multi-arm bandit
problem is to compute the Gittins index. In this paper a fi-
nite dimensional algorithm is presented which exactly com-
putes the Gittins index. Suboptimal algorithms for comput-
ing the Gittins index are also presented and experimentally
shown to perform almost as well as the optimal method. Fi-
nally an application of the algorithms to tracking multiple
targets with a single intelligent sensor is presented.

Key words: Dynamic Programming, Gittins index, Mul-
tiarmed Bandit Problem, Hidden Markov Models

1. PROBLEM FORMULATION

The multi-armed bandit problem is a special case of a dy-
namic stochastic scheduling problem and has numerous ap-
plications in the scheduling of traffic in broadband networks,
manufacturing systems and robotics. The standard multi-
armed bandit problem involves fully observed Markov chains
and is simply a Markov Decision Processes (MDP’s) with a
powerful structure. Several fast solutions have been recently
proposed to solve this Markov chain multi-arm bandit prob-
lem (see [4] and [9]).

In this paper we give a solution of the hitherto unsolved
multi-armed bandit problem for Hidden Markov Models
(HMMs). The problem can be described as follows:
Problem: There areP parallel projects (or activities),p =
1; : : : ; P , of which only one can be worked on at any time
instant. Lets(p)k denote the state of projectp at timek. We
assume that each projectp has a finite number of statesNp,
indexed byi(p) = 1; : : : ;Np. If project p is worked on at

time k, one receives an immediate reward of�kR(s(p)
k
; p)
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and the states(p)k evolves according to aNp state Markov

chain with transition probabilitymatrixA(p) = (a
(p)
ij )i;j2Np

.
The states of all the other idle projects are unaffected, i.e.,
s
(p)
k+1 = s

(p)
k , if the projectp is idle at timek.

The total discounted reward over an infinite time hori-
zon is given by:

J = E[
1X
k=0

�kR(s(uk)
k

; uk)] (1)

where,0 < � < 1 denotes the discount factor,R(s(uk)k ; uk)
is the immediate reward of statesk of project denoted byuk,
anduk is the control at timek, which, in the multi-armed
bandit case, corresponds to the project chosen to evolve at
timek, souk = 1; : : : ; P . The sequence of controls,fukg,
is called a policy, denoted by�. Define� to the class of all
possible policies�. Solving the multi-arm bandit problem
involves determining the optimal policy� 2 � which will
maximize the total discounted reward (1).

The above problem formulation is the Markov chain multi-
arm bandit problem and has been widely studied in the lit-
erature [9]. In this paper, motivated by the applications
described below, we consider the HMM multi-arm bandit
problem: We assume that the state of the projects

(p)
k is not

directly observed. Instead, noisy measurements (observa-
tions) y(p)k of the active project states(p)k are available at

timek. Assume that these observationsy
(p)
k belong to a fi-

nite setMp indexed byj(p) = 1; : : : ;Mp. Let M (p) =

(m
(p)
ij )i2Np;j2Mp

wherem(p)
ij = P (y

(p)
k = jjs

(p)
k = i), de-

note the “symbol probabilities” of the HMM.Our aim is to
solve this HMM multi-arm bandit problem, i.e., determine
the optimal policy� 2 � which will yield the maximum
possible reward in (1). Let J� = max�2� J� denote this
optimal cost.
Application: Scheduling of a single intelligent sensorNu-
merous applications of the Markov chain multi-armed ban-
dit problem in scheduling and manufacturing systems can
be found in [2], [3] and [10]. Similar applications with noisy



observations can be formulated to fit the multi-arm bandit
problem for HMMs. However, in this paper we present a
novel application of the HMM multi-armed bandit problem
in multi-target tracking. The problem is as follows:
There areP targets (e.g. aircraft). whose coordinatess

(p)
k ,

p = 1; 2 : : : ; P , evolve randomlyaccording toP indepen-
dent finite state Markov chains (see [] the use of Markov
models in tracking). Assume that there is a single sensor
which receives noisy measurementsy

(p)
k of only one target

at any given time instant. Our aim is to answer the question:
Which single target should the sensor measure at each time
instant?
Since the sensor can measure only one target (say targetp)
at a given time, the coordinates of the otherP � 1 targets
cannot be measured. The sensor simply assumes that the
coordinates of theseP � 1 un-measured targets remain in
the same state. To compensate for this risky assumption,
the sensor places a penalty cost of

PP

q=1; q 6=p �
kC(sqk; q)

for theseP � 1 un-observed targets. This cost is typically
depends on factors such as distance of the targets from the
sensor when last measured. The aim is to minimize the cost
incurred by the sensor for tracking theP targets over an
infinite horizon.

The above problem is called thetax problem[1], [9].
It is similar to the HMM multi-arm bandit problem except
that the non-evolving projects (targets) incur a cost. As
shown in [1],[9] any tax problem can be converted to a
multi-arm bandit problem. The above tax-problem is eas-
ily converted to the following HMM multi-arm bandit prob-
lem with reward function for projectp equal toR(s(p)k ; p) =

C(spk; p)� �E
h
C(s

(p)
k+1; p)

i
.

As will be seen from the information state formulation
below, the problem can be viewed as follows: Design an
optimal scheduling policy to optimally choose ateach time
instant one target. Run a HMM filter to process these mea-
surements to estimate the target’s coordinates. (There is a
computational cost associated with running the HMM filter
for this target. However, since this cost is independent of
the target it is hence irrelevant).

Information state formulation . As it stands, the above
HMM multi-arm bandit problem is a partially observed in-
finite horizon stochastic control problem with a powerful
structure. The structure considerably simplifies the solution,
as will be shown later. But first, as is standard with such
stochastic control problems – we convert the partially ob-
served stochastic control problem to a fully observed stochas-
tic control problem defined in terms of theinformationstate.

The information state at timek, which we will denote
by x

(p)
k , is merely the conditional filtered density of the

Markov chain states(p)k given the past observationsY (p)
k =

(y(p)0 ; : : : ; y
(p)
k ):

x
(p)
k (i) = P (s(p)k = ijY (p)

k ) (2)

The information state is a sufficient statistic to describe the
current state of a HMM (see [5] and [1]) and thus converts
the partially observed Markov chain to a fully observed one.

The information state update is computed straightfor-
wardly by the HMM state filter (also known as the “forward
algorithm”):

x
(p)
k+1 =

B(p)(yk+1)A(p)0x
(p)
k

10B(p)(yk+1)A(p)0x
(p)
k

= T [x
(p)
k ] (3)

whereB(p)(yk+1) = (b
(p)
ij )i2Np;j2Mp

is a diagonal ma-
trix formed by theyk+1’th column of the observation matrix
M (p), that is,b(p)ii = m

(p)
iyk+1

; i 2 Np; yk+1 2Mp.
In terms of the information state, the total discounted

reward (1) can be re-written as

J = E[
1X
k=0

N (uk)X
i=1

R(i; uk)x
(uk)
k (i)] (4)

whereuk andR are as in equation (1). The aim is to com-
pute the optimal policyargmax�2� J� .

Notice that the information state is a continuous-state
(infinite state) process. At each time it is aNp dimensional
vector, where each entryi of the vector is given by equa-
tion ( 2). Thus unlike the standard Markov chain multi-
arm bandit problem – which can be optimally solved via fi-
nite dimensional dynamic programming, one might expect
that the HMM multi-arm bandit problem requires infinite
dimensional dynamic programming. The surprising result
we will show is that there is a finite dimensional optimal
algorithm.
Main Results: The general multi-arm bandit problem has
a rich structure which makes possible a powerful solution
methodology. It turns out that the optimal policies have an
index rule; that is, for each projectp, there is a a function

p(s

(p)
k ) called the “Gittins index” such that the optimal pol-

icy at timek is to

Work on projectq whereq = argmax
p
f
p(s

(p)
k )g

For a proof of this index rule for general multi-arm bandit
problems please see [2], [10]. Thus computing the Gittins
index is a key requirement for solving any multi-arm bandit
problem. Thus far all algorithms for assigning the Gittins
index have been forfinite stateMDPs.

The main contributions of this paper are:
1. We present a finite dimensional solution to compute the
Gittins indices for theinfinite stateHMM multi-arm bandit
problem. We will show that Gittins index can optimally be



assigned to all the states of an infinetely sized state space of
a HMM, using dynamic programming.
2. The optimal algorithm, while finite dimensional, has a
high computational cost. We will also present two subopti-
mal algorithms for calculating the Gittins index.
3. Finally we present numerical examples of the above al-
gorithms for two applications: (i) The machine replacement
problem – which is a universally used benchmark, (ii) The
multi-target tracking problem.

The organization of this paper is as follows: section 2
presents the DP solution for calculating the Gittins indices
of the POMDP information states; section 3 presents an al-
gorithm on how to calculate the Gittins indices, optimally
and suboptimally; and section 4 contains numerical exam-
ples which demonstrate the use of the Gittins index and
compare the optimal and suboptimal methods of calculat-
ing it.

2. FINITE DIMENSIONAL SOLUTION FOR THE
GITTINS INDEX

In this section we will formulate a finite dimensional Gittins
index solution for the infinite state space of a HMM. The
key ideas we will use are the following two results (we will
drop the project index dependency since we will be working
with only one bandit project):

Result 1 The return-to-state-x0 problem. In the return-to-
state-x0 problem [4], at any time, a maximization between
the following two actions is carried out: continue project,
that is, accumulate reward�kR(xk) and evolve the project
state asxk+1 = T [xk]; or restart the project in statex0,
that is, accumulate reward�kR(x0) and evolve the project
state asxk+1 = T [x0]. The value function of the return-
to-state-x0 problem is given by the finite horizon Bellman
equation:

Vk(xk; x0) = max[g0xk + �EVk+1(T [xk]; x0);

g0x0 + �EVk+1(T [x0]; x0)] (5)

where,g = (R(1); : : : ; R(N ),R is as in equation (1) with-
out the project dependency,0 < � < 1 is a discount factor.

As k!1, the value function from equation ( 5) evalu-
ated atx0 becomes the Gittins index of statex0. To obtain
the Gittins index for every statexi, the return-to-state-xi
calculation has to be repeated for everyxi.

Result 2 Finite representation of the HMM value funtion.
At every time instant the finite horizon value function of a
HMM is piecewise-linear, therefore it can be represented
with a finite number of vectors (see [6], [7] and [8]).

We can combine these two results, and state the following
theorem:

Theorem 1 The value function of a HMM return-to-state-
x0 problem (5) can be written in closed form, that is, it
can be represented by a finite number of vectors in a new
augmented state space defined as(xk; x0), in the following
way:

Vk(xk; x0) = max
i;j

[(c; d)0i(xk; x0); (0; f)
0
j(xk; x0)]

(6)

where the augmented space(xk; x0) is a concatenation of
two information states, therefore is a vector of dimension
2N . Vectors(c; d)i and(0; f)j are also of this size.

PROOF. The proof is by induction. At timeN ,

VN (xN ; x0) = max[(g; g)0(xN ; x0); (0; g)
0((xN ; x0)] (7)

where vectorg is as in equation ( 5). Notice that equa-
tion ( 7) is of the required form stated in the theorem.

Assume that at timek + 1, the value function also has
the form of equation ( 6):

Vk+1(xk+1; x0) = max
i;j

[(c; d)0i(xk+1; x0);

(0; f)0j(xk+1; x0)] (8)

Substitute equation ( 8) into Bellman’s equation ( 5),

Vk(xk; x0) = max
i;j

[(g; 0)0(xk; x0) +

� E[max
i;j

[(c; d)0i(xk+1; x0); (0; f)
0
j(xk+1; x0)]jxk = xk];

(g; 0)0(x0; x0) + �E[max
i;j

[(c; d)0i(xk+1; x0);

(0; f)0j(xk+1; x0)jxk = x0]]]

After some algebraic manipulations this yields

Vk(xk; x0) = max
i;j

[(g; 0)0(xk; x0) +

max
i;j

[(c�
X
m

B(m)A0xk; �dx0)j); (0; �f)j(xk; x0)];

(g; 0)0(x0; x0) +max
i;j

[(c�
X
m

B(m)A0x0; �dx0);

(0; �f)j (x0; x0)]]

Taking out the inner maximizations:

Vk(xk; x0) = (9)

max
i;j

[(g + �c
X
m

B(m)A0; �d)0i(xk; x0);

(g; �f)0j (xk; x0); (0; g+ �ci
X
m

B(m)A0 + �d)0i(xk; x0);

(0; g + �f)0j (xk; x0)] (10)

Thus, the augmented state space has a closed form solution.
2



3. ALGORITHMS

In this section we will state the optimal and suboptimal al-
gorithms for computing the Gittins index.
Optimal . There are numerous standard algorithms [6], [7]
and [8] that can be used to compute the finite set of vec-
tors depicted in equation ( 10). They are all based on the
on the result from theorem 1. After obtaining these vec-
tors, the Gittins indices are given as follows:
opt(x) =
maxi[�0i(x; x)], where the�i’s are vectors of the same size
as the augmented state space defined in theorem 1. The Git-
tins index of statex is the return-to-state-x problem value
function evaluated at statex.
Suboptimal. For large size problems, the above algorithm
iteration can be time and memory consuming. For such
cases further approximations of the index can be used. We
state these next.

Definition 1 The expected Gittins index of an information
statex is defined as
exp(x) =

P
i 
(i)x(i)

where
(i) is the Gittins index of theith state of the process
we are trying to observe, andx(i) is given by equation (2).

Definition 2 The MAP (maximum a posteriori) value of the
Gittins index of an informationstatex is defined as
MAP (x) =

(maxxi [i])

The MAP Gittins index of the information state corresponds
to the Gittins index of the statei which has the the largest
x(i) value in the information statex given by (2).

0 10 20 30 40 50 60 70 80 90 100
0

1

Figure 1: Sensor tracking both targets

4. NUMERICAL STUDIES

Machine replacement problem. The aim of this numerical
example is to compare the optimality of the three different
methods for calculating the Gittins index. Here, we have a
3-process multi-arm-bandit machine replacement problem.
The Gittins indices foreach of these processes were cal-
culated using the optimal and the two suboptimal methods
given in section 3.

The multi-armed bandit process was simulated once for
each different algorithmfrom section 3, over a horizon length

of 500. The optimal algorithm gave the largest total re-
ward while the suboptimal algorithms both had a total re-
ward which was 99% of the optimal result.
The two-state tracking problem. The aim of this numeri-
cal example is to demonstrate how the index is used to op-
timally choose the best project to evolveeach time. Here,
we set up two targets (two bandit processes) whose indices
were computed via the optimal algorithm given in section 3.
The targets were labeled 0 and 1, and their tracking was sim-
ulated for 100 time steps. Figure 1 demonstrates the time
intervals when the sensor was tracking each of the targets.
In this simulation both targets had comparable indices so
the sensor switches between them.
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