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ABSTRACT
This paper describes a novel approach of using multi-resolution
analysis (MRA) for automatic speech recognition. Two-
dimensional MRA is applied to the short-time log spectrum of
speech signal to extract the slowly varying spectral envelope that
contains the most important articulatory and phonetic
information. After passing through a standard cepstral analysis
process, the MRA features are used for speech recognition in the
same way as conventional short-time features like MFCCs,
PLPs, etc. Preliminary experiments on both clean connected
speech and noisy telephone conversation speech show that the
use of MRA cepstra results in a significant reduction in insertion
error when compared with MFCCs.

1. INTRODUCTION

In general, the speech short-time spectrum S(f) can be expressed
as,

S(f) = G(f)V(f) (1)

log S(f) = log G(f) + log V(f) (2)

where G(f) is the excitation and V(f) is the vocal tract spectral
envelope. The logarithm operation turns the spectrum into a
summation of two parts, namely the fine spectral details log G(f)
and the spectral envelope log V(f). For speech recognition
purpose, only V(f) needs to be extracted since it carries most of
the phonetic information.

Previous research shows that human articulators move at rates
between 2-12Hz [7] while others demonstrate that modulations at
rates above 16Hz are not required for speech intelligibility [8]. In
[5,6], PLP and LPC cepstra are band-pass filtered respectively
and results showed that most of the linguistic information lie in
the range between 1 and 16Hz of the cepstral coefficients. These
provide evidences that too many temporal details might not be
necessary for recognition task. This is especially true for
connected or continuous speech which require continuous
movement of articulators. Therefore, the dynamic aspect of
articulatory information lies with the temporal variation of the
spectral envelope.

Multi-resolution analysis (MRA) is a signal decomposition
technique that decomposes a signal into different frequency
bands [1]. In this study, we use two-step MRA in both frequency
and time domain, to: 1) separate the spectral envelop from fine
spectral details; and 2) extract smooth temporal trajectory of the
spectral envelopes.

Conventionally, time trajectory of spectral features is represented
by the first and second derivatives of the cepstral coefficients.
Our proposed approach finds its novelty in that it applies a
unified spectro-temporal analysis directly to the time-varying
spectral envelope.

In the following sections, the feature extraction procedure and
the preliminary experimental results will be described. Section 2
describes the 2-D MRA process and the method to obtain warped
spectrum MRA cepstra. Section 3 introduces the experiments
with clean connected speech and noisy telephone conversation
speech to compare the proposed MRA cepstra and the
conventional Mel-Frequency Cepstral Coefficients (MFCCs).

2. FEATURE EXTRACTION

2.1 2-D multi-resolution analysis of spectrograms

Multi-resolution analysis is a signal decomposition technique to
separate the signal into certain number of frequency bands. MRA
decomposes a signal s(n) into the detail components dmn ,
m=1,2,…,L and the coarsest approximation cLn as shown in
Figure 1. This is done by using multiple stages of identical low-
pass filters g(p) and high-pass filters h(p). The output of each
stage is sub-sampled by two.  The MRA filters are used to divide
the spectrum successively by two.

The 2-D MRA extends the 1-D MRA to 2-D case. The idea is to
first form a 1-D column sequence from the 2-D image, perform
1-D MRA, then restore the MRA output to the 2-D format and do
another 1-D MRA to the row sequence. Figure 2 illustrates the 2-
D MRA decomposition. Separable filters [10] are used in this
study rather than non-separable one [9] because it is simple to
implement and the 1-D filters can be re-used. Since we are not
interested in the spectro-temporal details of the speech
waveform, we perform low-pass filtering in the 2-D MRA and
obtain the approximation coefficients while ignoring all detail
coefficients.

Typical Daubechies-2 wavelet filter [11], with extremal phase
and highest number of vanishing moments, is used in this study.
Moreover, short filter has the advantage of reducing the time
delay introduced by filtering in practical automatic speech
recognition (ASR).
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2.2 Warped frequency scale

Psychophysical studies have shown that human perception of the
frequency content of sounds does not follow a linear scale. Each
pure tone with an actual frequency is perceived as a subjective
pitch [3]. In order to simulate the perceptual properties of human
beings, we warp the frequency spectrum based on mel-scale
before performing the MRA. The mel-scale is defined by

Mel(f) = 2595*log10(1+f/700) (3)

We transform the constant frequency spacing FFT point to
constant mel frequency interval by eqn. (3) and linear
interpolation. Figure 3 gives an example of a pair of unwarped
and warped short-time frequency spectrums.

2.3 The warped MRA cepstrum

The cepstrum of the spectral envelope (column sequence)
extracted by the 2-D MRA is calculated by applying discrete
cosine transform (DCT) to obtain 12 coefficients. These 12 MRA
cepstra are used for comparison with the MFCCs commonly used
in ASR. The MRA cepstrum is calculated as in Figure 4. Figure 5
shows the difference in time trajectory of one of the cepstrum
(c1) of MFCC and warped MRA cepstra. The time trajectory of
the warped MRA cepstrum contains less fluctuation than that of
MFCC.

In the following experiments, 16ms window width is used and
level 1 approximation is good enough to extract the spectral
envelope. Only 0-4kHz spectrum is used for MRA.
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Figure 4: Procedure for computation of warped MRA cepstrum
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(b) Warped spectrum

Figure 3: (a) STFT of a 16ms speech segment. (b)
Warped spectrum in mel-scale

Figure 1: 1-D MRA decomposition
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Figure 2: Lowpass filtering of 2-D MRA decomposition
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3. EXPERIMENTAL RESULTS

3.1 Experiment 1 – Cantonese CUWORD Corpus

The Cantonese CUWORD database [13] was designed to provide
Cantonese speech data for acoustic modeling at syllable or sub-
syllable level. The basic corpus consists of 2,527 polysyllabic
words, each of which is 1 - 7 syllables in length. 13 male and 15
female speakers were recorded. Each of them read the entire
corpus once in a moderately quiet room. As a result, about
70,000 utterances were obtained and manually transcribed. The
speech data from 22 speakers (10 male and 12 female) are
designated for the training of speech recognition systems while
the remaining data are for performance evaluation purpose.

Syllable-level HMMs have been trained  with 2-D MRA cepstra
and MFCCs.  In each case, a total of 573 syllable models with 3
Gaussian mixtures per state were trained using the HMM toolkit
(HTK) [12]. For MFCCs, the analysis window length was 25
msec and frame period was 10 msec. Each feature vector had 26
components, including 12 MFCCs, energy and their delta.

We compared the MFCC baseline system with the following
MRA parameter sets:

CU-MRA-D : 12 unwarped spectrum MRA cepstra, 12
delta cepstra

CU-WMRA-D : 12 warped spectrum MRA cepstra, 12 delta
cepstra

Table 1 and 2 show the utterance-level recognition rate and
number of syllable-level recognition errors respectively. Without
using any lexical and grammatical constraints, 25.49% of the test
utterances can be correctly recognized by the baseline system.
The use of MRA cepstra results in a significant improvement to
30.91% utterance recognition rate. As show in Table 2, the major

improvement is attained by reducing 81.13% of the insertion
errors (from 7886 to 1488) while the number of deletions and
substitutions only increase slightly. If the warped MRA cepstra
are used instead, the number of all types of errors are reduced
and the resulted utterance recognition rate is 33.1%

CU-Baseline CU-MRA-D CU-WMRA-D

Utterance correctness 25.49% 30.91% 33.10%

Table 1: Utterance-level recognition rate with MRA cepstra and
MFCC for CUWORD corpus (Total utterance number: 14896)

Deletion Substitution Insertion

CU-Baseline 28 13302 7886

CU-MRA-D 85 14675 1488

CU-WMRA-D 76 14004 1307

Table 2: Syllable recognition error with MRA cepstra and
MFCC for CUWORD corpus (Total number of syllables in test
data: 41170)

3.2 Experiment 2 - Mandarin Call Home Corpus

The second release (Apr95) of Mandarin Call Home corpus [4]
produced by the Linguistic Data Consortium (LDC) was used. It
is a Mandarin corpus of telephone conversations. There are 80
conversations in the training set and 20 in development test set.
Channel noise and distortions occur in Call Home because of
signal transmission over international connections. The purpose
of the experiment on Call Home is to investigate the
effectiveness of MRA cepstra on noisy, distorted telephone
channel.

12 MFCC and their delta were used in the baseline system,
forming a 24-component vector for each frame. The frame size
was 16 msec and frame period was 10 msec. Syllable back-off
bigram [12] built on the Apr95 training set was also added to the
baseline system. A total of 388 syllable HMMs, with 8 Gaussian
mixtures per state, were trained using HTK.

We compared the baseline system with the following MRA
parameter set:

CH-WMRA-D: 12 warped spectrum MRA cepstra, 12 delta
cepstra.

And the effect of MRA features was also investigated with the
bigram added.

Table 3 shows the syllable-level recognition errors for Mandarin
Call Home corpus. The performance of the warped MRA cepstra
without language model (LM) is more or less the same as to the
baseline system (with LM). Each type of the error is very close in
both cases. When both MRA cepstra and language model are
used together, the number of insertion errors can be further
reduced by 58.3% (from 5981 to 2493) and the utterance
recognition rate becomes 11.32% (Table 4). This may suggest
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(a) time trajectory of c1 of MFCC
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(b) time trajectory of c1 of warped MRA cepstra

Figure 5: Time trajectory of cepstrum-1 for a) MFCC
and b) warped MRA cepstra for Cantonese utterance
“saa1-tin4-daai6-wui6-tong4”.



that the functionality of MRA and the language model are
complementary to each other.

The above recognition results are consistent with the experiment
using clean speech in CUWORD corpus. This indicates that the
MRA method also works well for noisy and distorted telephone
channel with conversation speech.

Deletion Substitution Insertion

CH-Baseline 1576 19179 5948

CH-WMRA-D 1323 19692 5981

CH-WMRA-D  w/ bigram 2720 17277 2493

Table 3: Syllable recognition error using MRA cepstra and
MFCC for Mandarin Call Home corpus (total number of
syllables in test data: 27436)

CH-Baseline CH-WMRA-D CH-WMRA-D w/ bigram

Utterance
correctness

7.08% 8.75% 11.32%

Table 4: Utterance correctness using MRA cepstra and MFCC
for Mandarin Call Home corpus (total utterance number: 3660)

4. DISCUSSION

From both experiments described above, we consistently observe
that the MRA cepstra can greatly improve the utterance-level
recognition accuracy by reducing insertion errors. This may be
due to that, as shown in Figure 5, the proposed MRA features
have a smoother time trajectory which would cause fewer
undesirable state transitions in the decoding process of HMM.
Such reduction of insertion errors finds its importance in
continuous speech recognition, especially for Chinese language
because of its phonetic structure.

Mandarin Call Home is a very difficult task since it deals with
noisy spontaneous speech. In [4], a character recognition
accuracy of about 35% was attained by making use of a lot of
linguistic constraints including a 44,000-word lexicon, a word
trigram, etc… In our experiment, we have used a simple syllable
bigram which covers a small portion of lexical and grammatical
information. Therefore, the use of MRA can only attain a low
utterance recognition rate of 11.32% for the Mandarin Call Home
experiment. Nevertheless, it still outperforms MFCCs by having
much less insertion errors. Indeed, the utterance-level recognition
accuracy of 33.10% for the CUWORD corpus is highly
impressive if we consider the fact that no linguistic information
has been incorporated yet.

In addition to the great improvement in insertion error, the
recognition speed is faster when using MRA cepstra because the
number of frames is smaller due to the sub-sampling by 2 in
MRA.

5. CONCLUSION

2-D MRA has been proposed as a unified analysis technique to
extract spectro-temporal features for speech recognition. It is

aimed at preserving the most important spectral and temporal
features while discarding the irrelevant ones. The preliminary
experimental results show that the 2-D MRA cepstra reduces a
significant amount of insertion error when compared with
standard MFCC for both clean connected speech and noisy,
distorted telephone conversation speech. Although it is too early
to conclude that the proposed MRA features would generally
outperform conventional acoustic features in speech recognition
applications, our work presents a promising direction of research
along which much more work need to be done.
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