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ABSTRACT

In this paper, a new approach for linear prediction
(LP) analysis is explored, where predictor can be
computed from a mel-warped subband-based au-
tocorrelation functions obtained from the power
spectrum. For spectral representation a set of
multi-resolution cepstral features are proposed.
The general idea is to divide up the full fre-
quency-band into several subbands, perform the
IDFT on the mel power spectrum for each sub-
band, followed by Durbin's algorithm and the
standard conversion from LP to cepstral coe�-
cients. This approach can be extended to sev-
eral levels of di�erent resolutions. Muti-resolution
feature vectors, formed by concatenation of the
subband cepstral features into an extended fea-
ture vector, are shown to yield better performance
than the conventional mel-warped LPCCs over the
full voice-bandwidth for connected digit recogni-
tion task.

1. INTRODUCTION

The structure of a typical continuous speech recog-
nizer consists of a frontend feature analysis stage
followed by a statistical pattern classi�er. The fea-
ture vector, interface between these two, should
ideally contain all the information of the speech
signal relevant to subsequent classi�cation, be in-
sensitive to irrelevant variations due to changes in
the acoustic environments, and at the same time
have a low dimensionality in order to minimize the
computational demands of the classi�er [3]. Sev-
eral types of feature vectors have been proposed
[10]. Most speech recognizers have traditionally
utilized cepstral parameters derived from an LP
analysis due to the advantages that LP provides
in terms of generating a smooth spectrum, free of
pitch harmonics, and its ability to model spectral
peaks reasonably well. Mel-based cepstral param-
eters, on the other hand, take advantage of the

perception properties of the human auditory sys-
tem by sampling the spectrum at mel-scale in-
tervals. Logically, combining the merits of both
LP analysis and mel-�lter bank analysis should,
in theory, produce an improved set of cepstral fea-
tures.
This can be performed in several ways. For ex-

ample, one could compute the log magnitude spec-
trum of the LP parameters and then warp the fre-
quencies to correspond to the mel-scale. Previous
studies have reported encouraging speech recog-
nition results when warping the LP spectrum by
a bilinear transformation prior to computing the
cepstrum, as opposed to not using the warping
[11]. Several other frequency warping techniques
have been proposed, for example in [13] a mel-like
spectral warping method through all-pass �ltering
in the time domain is proposed. Another approach
is to apply mel-�lter bank analysis on the signal
followed by LP analysis to give what will be ref-
ered to as mel-lpc features [11]. The computation
of the mel-lpc features is similar in some sense to
PLP coe�cients [4]. Both techniques apply a mel
�lter bank prior to LP analysis. However, the mel-
lpc uses a higher order LP analysis with no per-
ceptual weighting or amplitude compression. The
basic ideas of all the above techniques are to try
to perceptually model the spectrum of the speech
signal, which lead to an improved speech quality
and provide more e�cient representation of the
spectrum for speech analysis, synthesis and recog-
nition.
In recent years there has been a number of pa-

pers on subband-based feature extraction tech-
niques [1, 7, 9, 15]. Recent theoretical and empir-
ical results have shown that auto-regressive spec-
tral estimation from subbands is more robust and
more e�cient than full-band auto-regressive spec-
tral estimation [12]. In this work, a new approach
for prediction analysis is proposed, where predic-
tor can be computed from a bunch of mel-warped
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Figure 1. Block diagram of hierarchical subband
linear predictive speech analysis with signal condi-
tioned minimum string error rate training.

subband-based autocorrelation functions obtained
from the power spectrum. Further, the level of
subband decomposition and subsequent cepstral
analysis can be increased such that features may
be selected from a pyramid resolution levels. In
this study, an extended feature vector is formed
based on concatenation of LP cepstral features
from each multi-resolution subband, de�ning a
large dimensional space on which the statistical
parameters are estimated. We restrict our pre-
sentation to only the recognizer based on hidden
Markov model (HMM) approach using continu-
ous density mixtures to characterize the states of
the HMM. A relative advantage of multi-resolution
feature set is that the inclusion of di�erent res-
olutions of subband decomposition in e�ect re-
laxes the restriction of using a single �xed sub-
band decomposition. One of the design choices
for subband-based schemes is the number of bands
and the exact subband boundary decomposition.

2. HSLPC CEPSTRAL FEATURES

In this section we explore a set of hierarchical
subband-based linear predictive cepstral (HSLPC)
features. The motivation is to explore new spec-
tral correlates that may provide more separable

features for classi�cation. Figure 1 shows the over-
all process of computing the hierarchical mel-lpc
features from a frame of speech. The steps in the
process are as follows:

� Mel-�lter bank analysis: This includes pre-
emphasis, blocking speech into frames, frame
windowing, Fourier transformation and mel-
�lter bank analysis. The center frequencies of
the �lters are spaced equally on a linear scale
from 100 to 1000 Hz and equally on a loga-
rithmic scale above 1000 Hz. Above 1000 Hz,
each center frequency is 1.1 times the center
frequncy of the previous �lter. Each �lter's
magnitude frequency response has a triangu-
lar shape that is equal to unity at the center
frequency and linearly decreasing to zero at
the center frequencies of the two adjacent �l-
ters. The spectrum for each frame is passed
through a set of M triangular mel-�lter banks,
where M is set to 24 in this study.

� Autocorrelation analysis: The IDFT is applied
to the smoothed power spectrum (without the
log operation) to yield Q autocorrelation coef-
�cients, where Q is set to 10 for level 1. For
level 2, Q is set to 8 for lower half and up-
per half subbands (0-2 KHz and 2-4 KHz).
For level 3, Q is set to 6 for each subband
quadrants (0-1 KHz, 1-2 KHz, 2-3 KHz and
3-4 KHz) and so on. The Figure 1 illustrates
the sequence of operations in each subband for
these resolution levels.

� Cepstral analysis: Each set of autocorrelation
coe�cients is converted �rst to LP coe�cients,
using Durbin's recursion algorithm, and then
to cepstral parameters using the standard LP
to cepstrum recursion. This process is re-
peated for each level and for each subband,
until we arrive at the required number of cep-
stral features from all the levels. Then the
multi-level subband features are concatenated
to form a single extended feature vector. The
�nal dimension of the cepstral vector is set to
12 in this study. We explored three types of
feature sets:

{ (12,0,0) represents 12 features from level 1.
{ (0,6,6) indicates 12 features from level 2 ( 6
features from lower subband and 6 features
from upper subband).

{ (6,3,3) represents 6 features from level 1
and six features from level 2 ( 3 features
from lower subband and 3 features from
upper subband).



For each frame of speech, the input feature vec-
tor is extended beyond the 12 HSLPC features
(and energy) to include the �rst and second or-
der derivatives. In total, a 39-dimensional feature
vector is used for each frame [6].

3. SPEECH DATA

The connected digit (CD) database used in this
study is a good challenge for speech recogniz-
ers because of its diversity. It is a compilation
of databases collected during several independent
data collection e�orts, �eld trials, and live ser-
vice deployments. The CD database contains the
English digits one through nine, zero and oh. It
ranges in scope from one where talkers read pre-
pared lists of digit strings to one where the cus-
tomers actually use an recognition system to ac-
cess information about their credit card accounts.
The data were collected over wireline network
channels using a variety of telephone handsets.
Digit string lengths range from 1 to 16 digits. The
CD database is divided into two sets: training and
testing. The training set includes both read and
spontaneous digit input from a variety of network
channels, microphones and dialect regions. The
testing set is designed to have data strings from
both matched and mismatched environmental con-
ditions. All recordings in the training and testing
set are valid digit strings, totaling 7461 and 13114
strings for training and testing, respectively [14].

4. SIGNAL CONDITIONED HMM
RECOGNIZER

Following feature analysis, each feature vector
is passed to the recognizer which models each
word in the vocabulary by a set of left-to-right
continuous mixture density HMM using context-
dependent head-body-tail models [6]. Since the
signal has been recorded under various telephone
conditions and with di�erent transducer equip-
ment, each HSLPC feature vector was further pro-
cessed using the hierarchical signal bias removal
(HSBR) method in order to reduce the e�ect of
channel distortion [11]. Each word in the vocabu-
lary is divided into a head, a body, and a tail seg-
ment. To model inter-word coarticulation, each
word consists of one body with multiple heads
and multiple tails depending on the preceding and
following contexts. In this paper, we model all
possible inter-word coarticulation, resulting in a
total of 276 context-dependent sub-word models.
Both the head and tail models are represented
with 3 states, while the body models are repre-

Feature Training Scheme
Vector Type ML Training MSE Training
HSLPC12;0;0 78.38% 90.69%
HSLPC0;6;6 79.06% 91.06%
HSLPC6;3;3 81.65% 92.10%

Table 1. String accuracy rate for an unknown-
length grammar-based connected digit recognition
task using the ML and MSE training methods as a
function of HSLPC feature type.

sented with 4 states, each having 4 mixture com-
ponents. Silence is modeled with a single state
model having 32 mixture components. This con-
�guration results in a total of 276 models, 837
states and 3376 mixture components. Training in-
cluded updating all the parameters of the model,
namely, means, variances, and mixture gains using
maximum-likelihood estimation (MLE) followed
by three epochs of minimum string error (MSE)
training to further re�ne the estimate of the pa-
rameters [5, 6, 8]. The HSBR codebook of size four
is extracted from the mean vectors of HMMs, and
each training utterance is signal conditioned by
applying HSBR prior to being used in MSE train-
ing [2]. The number of competing string models
was set to four and the step length was set to one
during the model training phase. The length of
the input digit strings are assumed to be unknown
during both training and testing [14].

5. EXPERIMENTAL RESULTS

Several sets of experiments were run to evalu-
ate the connected digit recognizers using three
types of HMMs (HSLPC12;0;0, HSLPC0;6;6 and
HSLPC6;3;3) and two types of training (ML and
MSE). The overall performance of the recogniz-
ers, organized as the string accuracy as a function
of the feature type is summarized in Table 1. For
example, the setHSLPC6;3;3 indicates that 6 mel-
lpc features are taken from the �rst resolution, and
3 mel-lpc features are taken from the lower and
3 from the upper band of the second resolution
level. The normalized frame energy is included
along with the multi-resolution features, and the
results represent the features supplemented in all
cases by the delta and delta-delta trajectory fea-
tures. Table 1 illustrates four important results.
First, the MSE training is superior to the MLE
training and the MSE-based recognizer achieves
an average of 55% string error rate reduction, uni-
formly across all types of speech models, over the
MLE-based recognizer. Second, some improve-



ment in performance using subband cepstral fea-
tures alone (HSLPC0;6;6), compared to the full
bandwidth cepstra HSLPC12;0;0 is also observed.
Thirdly, further improvement in recognition per-
formance is obtained when the multi-resolution
feature sets are employed as shown in third row
of Table 1. Finally, the best result obtained thus
far is from use of the features from both resolution
levels (HSLPC6;3;3), with a reduction in error rate
of 15% when compared with the �rst resolution
feature set alone (HSLPC12;0;0). From Table 1,
it is encouraging that the multi-resolution mel-lpc
features are demonstrated to improve recognition
on the telephone connected digit database com-
pared to single resolution mel-lpc features. These
results compare unfavorably with those reported
in [7], where use of both resolution levels is seen
to yield no further advantage.

6. CONCLUSIONS

We have addressed the problem of using multi-
resolution subband LP cepstral features for speech
recognition. The original contribution of this
paper is the introduction of a set of hierarchi-
cal subband-based LP cepstral features as speech
recognition features. We described the multi-
resolution LP cepstral extraction technique and
formulated extended feature vectors by concate-
nation of the hierarchical subband LP cepstral
features. Experimental results on connected digit
recognition task demonstrated a 15% string error
rate reduction by using the extended feature set
as compared to conventional mel-warped LP cep-
stral features over the full voice-bandwidth. This
suggests that the important additional cues for
speech discrimination may exist in the local spec-
tral correlates that are not captured by the full
band LP cepstral analysis and the inclusion of this
new multi-level of feature parameters further en-
hances the recognizer performance.
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