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ABSTRACT

A parameterization of the cone around a given vector in
N -dimensional vector space is derived. Vectors obtained
by changing the parameter values can not escape the cone.
The constraint is useful when it is known that an optimal
vector of �lter coe�cients is close in direction with the given
vector. Adaptive �ltering algorithms that use the steepest
descent method and stochastic gradient approximation are
developed for the case of �lter coe�cients constrained in the
cone. There is no need for monitoring the constraint since
it is always satis�ed by the construction. Two optimization
criteria are explicitly considered: the least mean square and
constant modulus. The cone constrained constant modulus
algorithm (CMA) is applied to the problem of user detec-
tion in a synchronous direct sequence code division multiple
access system. Its convergence is compared with the plain
CMA and back projection CMA. Under severe conditions
the cone constrained CMA is the only one who locks to the
desired user.

1. PROBLEM STATEMENT

Let x(t) be an N -dimensional vector of observations ob-
tained in the tth time interval. In order to obtain a scalar
estimate y(t), the observables x(t) are linearly processed
with a vector of weights w(t), so that

y(t) = w
H(t)x(t); (1)

whereH denotes the Hermitian transpose. The above equa-
tion describes a linear time-varying system. Furthermore,
it is known that the direction of the vector w(t) is close
to the direction of a given unit-norm vector u1. That is,
the vector w(t) must be within a cone around the vector
u1 in a M -dimensional space (M � N). The cone aperture
is de�ned as s = tan(�), where � is de�ned in Figure 1.
The length of the vector w(t) is not restricted. One way of
guaranteeing that the vector w(t) is within the cone, is to
check for each t whether this is a case. If the vector is out of
the cone, it should be projected back to the cone. In order
to avoid testing of the condition for each t, it is possible to
parameterize the coordinates of the vector w(t), in a way
that the condition is always satis�ed.

2. CONE PARAMETERIZATION

LetU be a unitary matrix of dimensionN�N . Also, let the
�rst column of U be the vector u1 which de�nes the center
of the cone. Moreover, assume that the �rst M columns of
U de�ne the M -dimensional space of the cone. The vector
of projections of w(t) to the columns of U is given as

v(t) = U
H
w(t): (2)

It can be parameterized in the following way:

v(t) =

2
6666666666666664

p1(t)
sp1(t) cos p2(t) sin p3(t)

sp1(t) cos p2(t) cos p3(t) sin p4(t)
...

sp1(t) cos p2(t) � � � cos pi(t) sin pi+1(t)
...

sp1(t) cos p2(t) cos p3(t) � � � cos pM (t)
pM+1(t)

...
pN(t)

3
7777777777777775

: (3)

The �rst M components of the vector v(t) satisfy

MP
i=2

jvi(t)j2

p21(t)
= s2 cos2 p2(t): (4)

That is, the projection of w(t) to the M -dimensional space
is within the cone speci�ed by the vector u1 and the aper-
ture s. The vector v(t) can be rewritten as

v(t) = [vTM(t)vTN�M (t)]T ; (5)

w(t)

u1
θ

Figure 1: Cone around a given vector
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Figure 2: Cone-constraint processing scheme

where

vM(t) = p1(t)

�
1 0

0 s cos p2(t)IM�1

�

�
MY
k=3

"
Ik�2 0 0

0 sin pk(t) 0
0 0 cos pk(t)IM�k+1

#
1M ; (6)

and
vN�M(t) = [pM+1(t) � � � pN(t)]T : (7)

Here Ik is the k � k identity matrix, and 1M is the M -
dimensional vector having all entries equal to one. The
estimate y(t) can be written as

y(t) = v
H(t)z(t); (8)

where z(t) = UHx(t). The processing scheme correspond-
ing to (8) is given in Figure 2.

3. ADAPTIVE PROCESSING

Typically, the linear processing (1) should be such that it
is optimal in some sense. The weights w(t), i.e. the pa-
rameter vector p(t) = [p1(t) � � � pN (t)]T , can be such that
minimize the average value of an error function of the esti-
mate y(t), Eff(y(t))g. Using the steepest descent method
and stochastic gradient approximation [1], the optimal pa-
rameter vector can be approached through the sequence of
parameter vectors de�ned by:

p(t+ 1) = p(t)� �
@f(y(t))

@y(t)
(rp(t)v

H(t))UH
x(t); (9)

where

rp(t)v
H(t) =

2
66664

@vH (t)

@p1(t)
@vH (t)

@p2(t)

...
@vH (t)
@pN (t)

3
77775 (10)

is the N � N matrix of derivatives. The matrix can be
rewritten as

rp(t)v
H(t) =

�
rpM (t)v

H
M(t) 0

0 IN�M

�
: (11)

The rows of the upper left submatrix in (11) are:

@vM (t)

@p1(t)
=1H

�
1 0

0 s cos p2(t)IM�1

�

�
MY
k=3

"
Ik�2 0 0

0 sin pk(t) 0
0 0 cos pk(t)IM�k+1

#
(12)

@vM (t)

@p2(t)
=1Hp1(t)

�
0 0

0 �s sin p2(t)IM�1
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(13)

@vM (t)

@pi(t)
=1Hp1(t)
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0 s cos p2(t)IM�1

�
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#
: (14)

One more motivation for using the cone constraint, is to
help the adaptive algorithm to avoid the convergence to
points corresponding to unwanted minima of Eff(y(t))g.
In the case when the estimated quantity is known, e.g. when
a training sequence d(t) is used to help the adaptation, the
error function whose average value is minimized, can take
the form of

f(y(t)) =
1

2
jy(t)� d(t)j2: (15)
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Figure 3: Weight trajectories (noiseless case)

Then, in Equation (9)

@f(y(t))

@y(t)
= (y(t)� d(t))�; (16)

where � denotes the complex conjugate operator. On the
other hand, when it is known that the modulus of estimated
quantity is constant, the error function can take the form
of

f(y(t)) =
1

4
(jy(t)j2 � �)2: (17)

Then, the derivative needed in Equation (9) is

@f(y(t))

@y(t)
= (jy(t)j2 � �)y�(t): (18)

4. INTERFERENCE SUPPRESSION IN

DS-CDMA SYSTEMS

A received signal in the synchronous direct sequence code
division multiple access (DS-CDMA) system can be repre-
sented in the following equivalent discrete-time form [2, 3]:

x(t) = CAb(t) + n(t); (19)

where C is a N �M matrix whose columns are user code
sequences. The M �M matrix A is diagonal, having as
entries the attenuations for user signals. The vector b(t)
is M -dimensional and has as entries user symbols that are
transmitted in the tth time interval. The N -dimensional
noise vector is denoted by n(t). In general, the user code
sequences in C are not orthogonal. Even if they are or-
thogonal at the transmitter side, the corresponding user
code sequences at the receiver side may not be, because of
the intersymbol interference and di�erence in time lags for
user signals. Also, the attenuations of the signals can be
quite di�erent and unknown.

Using the processing scheme (1), the y(t) should provide
an estimate of the transmitted symbol which corresponds
to a speci�c user. The adaptive estimation tries to decrease

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T

|E
(T

)|

Figure 4: Bit estimation error for User-1 obtained by cone
constrained CMA (noiseless case)

the estimation error. That can be done by using a known
training sequence and the error criterion (15). On the other
hand, it can be done blindly by minimizing the criterion
(17). The latter approach can be implemented by using the
constant modulus algorithm (CMA) [4]. A problem with
the CMA is that the receiver (i.e. the estimate y(t)) may
lock to the signal of a wrong user, if the signal is much
stronger than the signal of a desired user [5]. To alleviate
the problem constraints can be applied to the weight adap-
tation using the CMA. In [6], the projection of the weight
vectorw(t) to the code sequence of a desired user c1, should
be equal to one, i.e. wH(t)c1 = 1. Here, the application of
the cone constraint is advocated. The cone is around a vec-
tor which is assumed appropriate for detection of symbols
of a desired user. Typically that vector can be c1. Note
that w(t) = c1 corresponds to the correlation receiver. The
cone aperture should be chosen narrow enough to prohibit
locking to other users, but also wide enough to permit the
adaptation to the signal of a desired user by minimizing the
constant modulus criterion (17).

Let us consider a DS-CDMA system with only two users.
User-1 and User-2 use for transmission the code sequences

c1=[+1 + 1 + 1� 1� 1 + 1� 1]T =
p
7

c2=[�1� 1 + 1� 1 + 1 + 1 + 1]T =
p
7;

respectively. User-1 is the desired user. The users transmit
symbols �1. The attenuation of User-1 is 0.4 and of User-2
is 1.5, that is User-2 is 11.5dB stronger than User-1. The
cone aperture is s = 0:2 and the cone dimension is M = 2.
The vector w(k) which corresponds to the de-correlation
receiver is within the cone. In general, the choice of the
aperture should be based on the knowledge and/or predic-
tions of the user code cross-correlations and the user power
distribution. On a sequence of 5000 bits, we investigated
the convergence of the three constant modulus adaptive al-
gorithms: the plain CMA, back projection CMA, and cone
constraint CMA. The back projection CMA checks whether
w(k) is out of the cone and if yes, it orthogonally projects
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Figure 5: Weight trajectories (noisy case)

the weight vector to the closes point in the cone. The ma-
trix U is obtained by the QR decomposition of [c1c2]. The
adaptation step in (9) is � = 0:01. Weight trajectories
obtained by the three algorithms in the noiseless case are
plotted in Figure 3. The horizontal coordinate of a trajec-
tory point gives the projection ofw(k) to c1 and the vertical
coordinate the projection of w(k) to the second column of
U. Of course, the column is orthogonal to c1 and it is in
the plane de�ned by c1 and c2. All algorithms start with
w(1) = c1. The plain CMA converged to the de-correlation
receiver weights for User-2, i.e. it is locked to the unwanted
user. The back projection CMA was stuck on the cone
border. Only, the cone constrained CMA converged to the
weights which provide the User-1 symbol detection. The
weights correspond to the de-correlation receiver weights,
what is an expected result in the no-noise case. The corre-
sponding estimation error jy(t)� b1(t)j is given in Figure 4.
Note that only errors larger than one can produce wrong bit
decisions. Figure 4 shows that the cone constrained CMA
provided an errorless User-1 symbol detection for all 5000
bits.

In the presence of a stationary white zero-mean Gaus-
sian noise n(t), the weight trajectories for the three algo-
rithms are given in Figure 5. The average noise energy is
0.07 and this corresponds to the User-1 signal-to-noise ratio
of 3.6dB. All other conditions are same as in the noiseless
simulation experiment. Again, the plain CMA was useless
since it was locked to User-2. The back projection CMA
was stuck on the cone border. The cone constrained CMA
continued to serve User-1. The weights did not converged
to the de-correlation receiver weights (denoted by a trian-
gle in Figure 5). The estimation error obtained by the cone
constrained CMA is plotted in Figure 6. As can be seen
from the �gure, at the beginning of adaptation the error is
sometimes larger than one. That is, some bit decisions are
wrong. Also, after the convergence is achieved, the deci-
sion errors are possible when very high noisy spikes occur.
But that happens with lower probability. Of course, the bit
error rate can be estimated through long-term simulations.
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Figure 6: Bit estimation error for User-1 obtained by cone
constrained CMA (noisy case)

5. CONCLUSION

The derived parameterization of the cone around a given
vector enabled the development of adaptive algorithms of
training or blind type that automatically satisfy the cone
constraint. Among them are the least mean square algo-
rithm and constant modulus algorithm (CMA). The cone
constraint helps the algorithm to avoid unwanted conver-
gence points. Experiments show that under severe working
conditions the cone constrained CMA provides the detec-
tion of a desired user in a DS-CDMA system, while the
plain CMA and back projection CMA fail to do that.
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