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Abstract
We are interested in the problem of restoring scintigraphic
images acquired by the gamma detector in nuclear medicine. The
aim is to improve the detectability of possible heterogeneous
areas in different organs. We propose to solve the problem in the
Bayesian framework with the Maximum A Posteriori (MAP)
principle. The prior information was modeled by a Markov
Random Field (MRF). The optimization is based on two kinds
of methods: the stochastic algorithm of simulated annealing with
a Gibbs sampler, and the deterministic algorithm of Graduated
Non Convexity (GNC). We compared the results to the images
restored by the Metz filter, more classical in this field. We
applied these methods to the restoration of cold or warm nodules
in the thyroid gland. We noticed the superiority of the proposed
methods in terms of contrast around the nodules and uniformity
in the images.

1. Introduction

The scintigraphic images have very poor quality. The small
heterogeneous areas are detected only if their size is up to a
threshold depending on the used gamma camera. The main
degradations are due to  [1]:

• The Poisson noise.
• The bad spatial resolution of the detector, which

depends on the distance (source-detector).
• The bad energy resolution of the detector, which prevent

us from distinguishing primary and scattered photons,
near the photoelectric peak. The detection of scattered
photons causes a non-stationary spatial blur in the
image.

The last two problems above can be approximately taken into
account by using a Gaussian spatial impulse response where
variance is estimated in function of the used gamma camera.

In the case of the thyroid gland, the spatial impulse response is
supposed to be independent of the distance (source-detector).
This hypothesis is justified by noting that this organ is relatively
flat, so that all the points inside it are located at a distance
approximately constant from the camera.

The image formation model is a linear Poisson one. Let us note x
the vector whose components are obtained by scanning the
researched image, and C the convolution matrix. The number Yi

of photons detected at pixel i in the observed image is a Poisson
random variable of parameter E[Yi]=mi where mi is the average
number of photons detected at pixel i by the gamma camera:
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Each component Cij of the C matrix can be considered as the
probability that a photon emitted at real position j in the
researched image is detected at position i by the gamma-camera.

The convolution matrix C in (1) is ill conditioned. The
restoration of scintigraphic images is typically an ill posed
inverse problem [2]. Its resolution goes through the introduction
of prior information concerning the researched object. The
methods that we use all offer a regularized solution to the
problem: the Metz filter and the Bayesian MAP restoration.

2. Restoration by the Metz Filter

The expression of the Metz filter [3], [4] is based on another
writing of the inverse filter :
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H is the Fourier transform of the spatial impulse response. This
filter acts as the inverse filter to  a certain frequency, then as a
smoothing filter. The order p of the filter defines the cutting
frequency and enables us to reach a compromise between a
solution very regular but too far from the observed data, and a
solution close to the observed data but in which the noise is
increased. This regularization method is not entirely satisfactory
because the image is globally smooth and the possible local
discontinuities in the activity are reduced.

3. Bayesian MAP Method

The Bayesian MAP method allows us to regularize the solution
by introducing prior information about the researched object [5].
Defining the prior as a MRF permits to model images of different
natures. The discontinuities in the image can then be preserved in
judiciously choosing the local interaction function associated
with the MRF.

The MAP method presumes that the observed image y and the
researched image x are two specific realizations of two random
fields X and Y with which the density of probability p(X=x) and
p(Y=y) are associated [6]. The restored image is the one that
maximizes the posterior probability from the Bayes’ formula
following:

p(X=x|Y=y)=p(Y=y|X=x).p(X=x)/p(Y=y) (3)



Noting that the term p(Y=y) does not depend on x, the solution is
obtained by maximizing the product of two terms :

p(Y=y|X=x).p(X=x) (4)

The first one, p(Y=y|X=x) guarantees fidelity of the restored data
to the observed ones. It only depends on the image formation
model :
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The second term p(X=x), reflects our prior knowledge
concerning the researched object, and permits to obtain a
regularized solution. We modeled X field by a MRF, the
probability density p(X=x) then takes the following form :

p(X=x) = 1/Z.exp[-U(x)] with U Vc
c
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where U(x) is the a priori energy, Vc is the local interaction
function associated to the Markov field, Z is a normalizing
constant, ζ is the set of all cliques associated with a
neighborhood.

Since the images usually treated involve homogeneous and
transitions areas, the function Vc is defined as [5].
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where s symbolizes numerical approximation of horizontal and
vertical gradient in each site pixel i (in the case of the first-order
neighborhood), δ is a constant linked with the transition
threshold. The maximum of posterior probability is then reached
by minimizing the following function:
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The first term insures fidelity of restored data to observed ones,
and the second to prior information. α plays the role of a
regularization parameter. 

3.1 Stochastic Optimization

The function (8) is a non-convex function of x since its hessian is
a non-definite-positive matrix. We minimized it by a stochastic
relaxation method that theoretically guarantees to converge until
the global minimum. Relaxation stochastic methods [5], [7], [8]
proceed by local changes that do not necessary imply a
decreasing of the posterior energy. This feature makes them
reach, under some assumptions, the global minimum of energy
without being trapped to local minima. Stochastic methods of
simulated annealing rely on the introduction of a new parameter
T comparable with a temperature:
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Their principle consists of choosing a random sequence of
configurations according to a Gibbs distribution of energy (8)

while making parameter T decrease from a high temperature until
another one, close to 0. The posterior Gibbs field converges to
the uniform distribution over the set of minimal energy
configurations as T tends to 0, and to the uniform distribution
over the set Ω of all the configurations allowed when T tends to
infinity [8]. The annealing schedule (i.e. the way the temperature
decreases), which insures to converge to the configuration of
minimal energy, is chosen like [5] :
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Where T(ni) is the temperature at iteration ni, τ is constant.

[5] showed that such a schedule guarantees convergence to the
global minimum of the posterior energy, under a certain
condition on the parameter τ.

For each temperature T, the random choice of a new
configuration �x   according to the posterior law can’t be driven
directly because the number of configurations in the space of all
the allowed configurations is too  important. The most commonly
used approaches to make random choice appeal to Markov
chains and some of their properties. The idea of these methods
consists in defining an ergodic Markov chain for which the Gibbs
distribution represents the unique invariant distribution. We used
Gibbs sampler that build a Markov chain with transition
probabilities depending on the local characteristics of the
posterior Gibbs distribution. The Gibbs sampler builds a Markov
chain with (8) as equilibrium distribution. The introduction of
the parameter T, associated with the annealing schedule (10)
enables us to get random choice uniformly on the set of minimal
posterior energy configurations.

The main drawback of this method is very high calculation cost.
A variety of methods based on the expectation maximization
(EM) have also been proposed. The slow convergence of EM is
well documented in [9].

We introduce a deterministic relaxation algorithm inspired by the
GNC proposed first by Blake and Zisserman in 10] for
segmentation and extended to the ill-posed inverse problem in
[11], [12].

3.2 Optimization with GNC algorithm

The principle of this algorithm consists in approximating a non
convex function F(x) with a sequence of continuously derivable
functions Fr(x) converging toward it while r tends to infinity, by
taking care to choose the first Fo(x) to be convex (Fig. 1).

As far as we are concerned, the succession of functions is
obtained by making the parameter δ in (7) following a geometric
sequence of powers of two from δ0 until (2r .δ0). The first value
δ0 is chosen so that the hessian of the posterior energy is
positively definite. As the hessian of the first term of (8) is
positively definite [1], a sufficient condition for the posterior
energy to be convex, is that all the terms in the diagonal hessian
matrix of the second term in (8), are strictly positive. This
condition is satisfied if all the values s are within the interval ]-
δ,δ[ on which Vc  is convex. For the images usually processed,
one can suppose that all the absolute values of s are lower than a



bound. Unfortunately, this bound is unknown, and we estimated
it by the maximum value m of the gradient in the observed image.
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Figure 1 : principle of the GNC algorithm

Contrary to the method of simulated annealing, the GNC
algorithm does not insure to converge until the global minimum
of the function (8). However, the GNC algorithm always permits
to reach the same solution, which remains close to the global
minimum. Moreover, the solution is not very sensitive to the
choice of the relaxation scheme and to the regularization
parameter. In practical experiments, a satisfactory solution is
reached for much shorter computation time.

4. Estimation of Hyperparameters

We determined the optimal values of parameters on synthetic
data analytically simulated by convolution with a Gaussian
impulse response and corrupted by Poissonian noise. The width
at half of the maximum (WHM) of the impulse response is 9
pixels (standard deviation = 3.82 pixels). The noise is simulated
approximately by noting that a Poisson law with parameter n
converges to a Gaussian law with mean and variance n as n
increases. The corresponding researched data are mono-
dimensional signals of 64 pixels including a central area of 20
pixels of activity ω constant in the middle of an inactive area. We
made a succession of tests with ω varying between 10 and 200 by
step of 10. This choice enables to cover most of experiments in
clinical routine for the acquisition times and the activity of the
radioactive sources usually used. For each value of ω, 50
acquisitions of the same object were simulated. For every
simulated image, we optimized separately the parameters α or τ,
δ and the number of iterations ni, each separately, while keeping
the other constant. The quality of restoration is evaluated by
measuring the mean square error between the restored and the
original images.

α δ τ ni

GNC 1 m/25 40 maxi

Gibbs 1 m/2 3 1 1500

Chart 1: optimized hyper parameters (criterion : mean
square error); m is the maximum of the gradient in the
observed image.

The results are presented on figure 2 with ω=100. The
retained parameters are those for which mean square error
becomes minimal (MMSE). Chart 1 sums up the set of the
optimal parameters with the MMSE criterion. We only

notice that the optimal parameters barely depend on the
activity ω in the central area.
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line 1 δ(r=41); α varies;
ni=40 Iterations
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Figure 2 : deterministic (left) and stochastic (right)
algorithms : estimation of hyper-parameters (criterion :
mean square error); δ=m.2-(r-1)/8

.;  m is the maximum of
the gradient in the observed image.

5. Simulation

We simulated the acquisition of two images by Monte-Carlo
method. The first one contains a cylindrical cold nodule 12mm in
diameter located at the bottom of a cylinder filled with radio
active liquid. The second contains two cold nodules 20mm in
diameter located at 6mm from one to another, inside a radio
active cylinder. The WHM of the impulse response is about 23
mm. We measured the contrast at the nodules, uniformity in the
area of constant activity and Kaufmann distance (only for the
first model) which informs us about steep feature of the nodule
edges. We present results on chart 2.

a b c d

Figure 3 : simulated data with an 12mm diameter nodule.
a: observed data-b :GNC -c: stochastic algorithm-d:Metz.



a b c d

Figure 4 : simulated data with 2 nodules distant to 6mm
a: observed data-b :GNC -c: stochastic algorithm-d:Metz.

2 nodules model 1 nodule model

Contrast Uniformity Contrast Uniformity Kaufmann

Metz 0.34 45.98 0.28 66.01 0.61

GNC 0.50 5.38 0.14 5.48 0.25

Gibbs 0.94 0.07 0.41 0.32 0.04

Chart 2 : performance measures for each method for
simulated data.

The MAP method reconstructs the nodules with a slightly
greater contrast than Metz filtering. The superiority of the MAP
method is especially emphasized by the other two measures : the
variance in the constant activity areas is much lower in the MAP
restored images than those treated by the Metz filter. The
uniform areas indeed appear much more regularly according to
the prior information. Contrary to the Metz filter, this feature
does not exclude the preservation of clean edges as proved by
Kaufmann feature (values much closer to 0 for the MAP method
than for the Metz filter).

Concerning two optimization algorithms for MAP
restoration, we only note that the differences of performance are
very slight. On the contrary, the computation time is much
greater in the case of stochastic optimization than in the case of
the GNC algorithm. It is thus advised to use the GNC algorithm
in clinical routine.

Then we restored the acquired image of a conical frustum
phantom with 2 cylindrical nodules 10mm in diameter located at
5mm from one to another. The WHM of the impulse response is
about 9 mm. The restored images appear on Fig. 5.

a b c d

Figure 5 : acquired data of a conical frustum phantom.
a:observed data-b :GNC -c: stochastic algorithm-d:Metz.

After making a sequence of tests for different sizes of nodules
and different distances between nodules, we showed [1] that the
images presented in this paper correspond to the limit size and
distance of detectability for the impulse response given.

6. Conclusion

We have presented a new method of scintigraphic image
restoration based on the Bayesian framework and the MRF prior
model. The optimization was carried out using two different
methods : stochastic and GNC algorithms. The hyper-parameters
were calculated by drawing a series of tests which cover most
experiences in clinical routine. We applied the different methods
of restoration and the different algorithms of optimization in the
case of the thyroid gland. The difference of the Metz filter is that
the MAP method enables the regularization of solutions while
preserving discontinuities. This feature improves the detectability
of nodules. The proposed methods can also be used for other
kinds of images, in simply making a judicious choice for the
local interaction function associated with the MRF.
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