
AMD’S 3DNow!
TM

 VECTORIZATION FOR SIGNAL
PROCESSING APPLICATIONS

Dongho Kim and Gwangwoo Choe

Advanced Micro Devices
5900 E. Ben White Blvd.

Austin, Texas 78741, USA

ABSTRACT
AMD’s 3DNow!TM Technology provides substantial speedup for
Digital Signal Processing applications. A set of DSP routines is
vectorized with the 3DNow! TM technology. The simplicity of the
vector unit makes it easier to convert the conventional DSP
programs into vector operations, thus reduces the learning curve.
The performance gain from typical DSP routines such as FIR,
IIR and FFT indicates that the speedup can reach up to 1.5
comparing to the conventional host-based signal processing
units. 3D games and multimedia applications benefit from the
technology. The vectorization can be integrated into compilers
for the ease of use in increasing the performance of the signal
processing applications.

1. INTRODUCTION

Multimedia applications consist of computational components
commonly available from Digital Signal Processing (DSP)
applications. Speed improvement of such computational elements
has been investigated through a broad range of approaches such
as Application Specific Integrated Circuits (ASICs), high-
performance processors, and general-purpose microprocessor
[1][2][3]. Current research focuses on improving the parallelism
of the program in order to increase the performance. The ASIC
design is cost effective, but lack of programmability. AMD’s
3DNow!TM technology provides programmability as well as
parallelism.

The 3DNow!TM technology provides a vector-processing unit in a
general programming environment [4]. The vector units are
organized such that they compensate the deficiency of Intel’s
MMX technology by increasing the performance on floating-
point operations. The technology provides concurrent execution
of two single-precision floating-point data with a throughput of
an instruction cycle. The vector units are rather simple
comparing to other parallel architectures, but it is required to
convert the sequential programs into vector programs, so called
vectorization [2][3].

Applications benefit from the technology if and only if they are
vectorized. The size of the vector units determines the success
rate of the vectorization. Due to the rather simple structure, the
technology offers a high vectorization rate among its class. A
loop either in single-nested or multiple-nested is vectorized when
arrays are utilized in the program constructs. Conventionally, a
complex vectorization is accomplished through techniques
including loop distribution, partial vectorization, index-splitting,
and subexpression vectorization [2].

In this paper, a set of DSP routines is analyzed to illustrate that
the 3DNow!TM technology requires only a simple process for the
vectorization. It has also shown that the performance analysis is
close to the experiment result obtained from the execution of the

routines on actual AMD-K6-2 processor systems.

2. VECTORIZATION OF DSP MODULES

Digital signals have been processed in many different ways to
support industrial applications such as multimedia applications.
These applications are based on operations such as FIR filters,
IIR filters and FFT [5]. These routines are not only fundamental
in the applications but also provide important techniques
applicable to many other operations. Vectorizing such operations
illustrates how to convert digital signal-processing programs into
a parallel program with vector operations

},{},{},{ LLUULULU bababbaabac ++=+=+=

where a , ,b and c are vector operands. The 3DNow!TM

technology provides multiplication, addition, subtraction,
reduction, reciprocal, and comparison for the vector operation
[4].

Reduction is an operation to accumulate both all the entries of
the vector into a single floating-point data such as

LU ccc +=

The following notation will be utilized to present a loop over the
multiplication of two variables.

)()(+− ⋅=
ii

hxny σ

=∑
−

=

+⋅−−−
1

0

)}12(),2({}12(),2({
m

i

ihihinxinx

The subscript of the vector operands denotes the direction of the
memory access either in forward or reverse direction as shown
below.

)}12(),2({ +−−=+ inxinxx
i

)}12(),2({ −−−=− inxinxx
i

)}12(),2({ +=+ ihihh
i

)}12(),2({ −=− ihihh
i

In this sectioin, we will illustrate how simple the vectorization
process is for the FIR, IIR and FFT routines with the vector
notations.

2.1 FIR Filter Operation

The k-tap FIR filter operation is calculated by a summation

∑
−

=

−=
1

0

)()()(
k

i

ihinxny

Since each term of the summation is the multiplication of two
variables, x and h, it can be grouped as a pair of multiplication.

)}12()12()2()2({)(
1

0

+−−+−= ∑
−

=

ihinxihinxny
m

i

where m is equal to a half of the tap size, k. Now this equation is
programmed by the simple vector operation.

FIR-1:)()(,)()()(+− ⋅=+=
iiLU hxnynynyny σ

It is also possible to change the index of variable x with that of
variable h. This provides two additional vector programs.

FIR-1a:)()(,)()()(−+ ⋅=+=
iiLU hxnynynyny σ

FIR-2:)()(,)1()1()(++ ⋅=−++=
iiLU hxnynynyny σ

FIR-1 is a direct decomposition by swapping the input data or
moving a pair of data into vector register in a reverse order. FIR-
1a avoids the swap instructions by rearranging the filter
coefficients in advance. FIR-2 is specially designed to compute
the filter operation without either pre-arrangement of the filter
coefficients or swapping the input data.

Since the swap operation of the input data adds extra more
cycles, FIR-1 is less favorable than the other methods. However,
FIR-1 is easy for compilers to produce the vectorization. FIR-1a
is also simple but difficult for compilers to handle the filter
coefficient in a global context. Programmers may rearrange the
coefficients relatively easy, but it takes quite a bit of efforts for
compilers to accomplish because the coefficients could be
referenced throughout the entire programs.

2.2 IIR Filter Operation

The canonical form of IIR Filter is represented by

)()()()()()0()(
11

inxibinyianxbny
N

i

N

i

−+−+= ∑∑
==

The summation can be converted into the following vector
operations

IIR:

)}0(,0{0 bb = ,)}(,0{0 nxx =

)()()(00 −+−+ ⋅+⋅+=
iiii

xbyaxbny σσ

LU nynyny)()()(+=

Since y(n-1)…y(0), x(n-1)…, and x(0) are the history buffer
within a local function, they can be pre-arranged without
affecting other programming components. Notice that the input
signal x(n) is directly loaded as the initial value of the vector
register.

2.3 Fast Fourier Transform

Fast Fourier Transform algorithm is computed by applying a
bufferfly addressing to the computational kernel,

)()()(1 qXpXpX mmm +=+

r
Nmmm WqXpXqX))()(()(1 −=+

where p and q are the index of the complex data X and W. Since
the complex data requires both imaginary and real values, the
vectorization is accomplished by converting mX , 1+mX , and

r
NW into x , y , andw , respectively.

FFT:

)()()(qxpxpy +=
)()(},{ qxpxttt LU −==

},{)(ULLULLUU wtwtwtwtqy +−=

An N-point FFT uses logN stages where the kernel is computed
for each node and the results of the final stage are located at the
memory in the butterfly-addressing mode.

Converting the complex data into the vector provides a simple
vectorization for the FFT routine. However, it may take
substantial amount of efforts for compilers to produce such
vectorization because the compiler needs to perform code-
moving [6] in order to create the complex data type from the
float data type.

3. PERFORMANCE ANALYSIS

The vectorized version of the DSP program runs faster than
conventional program. However, the performance gain is not
identical to the theoretical upper bound that is the same as the
number of vector unit. For example, 2-way vector does not mean
that it can provide a speedup of 2, due to the presence of non-
vector portion of the program. A fully vectorized version is
referred to as ideal case, and the others as an actual execution in
this paper.

3.1 FIR

Since the conventional implementation of the k-tap FIR filter
utilizes a scalar operation by multiplying and adding each term
one at a time, the total instruction counts are

k multiplication + (k-1) addition
(k-1) delays

The sequential execution of such implementation by utilizing
individual arithmetic takes a total of

dam TkTkkTT)1()1(1 −+−+=
where mT , aT , and dT are the execution time of the multiplier,

adder and delay instruction, respectively.

FIR1 reduces the total number of instruction in half along with
swap instructions.

k/2 multiplication + k/2+1/2 addition
(k-1) delays
k/2 swaps
1 reduction

The latency of executing the program is

sdam T
k

TkT
k

T
k

T 



+−+



 ++



=

2
)1(

2

1

22

FIR2 provides better performnace due to the elimination of the
swap operations. Thus, the total latency is

dam TkT
k

T
k

T)2(
2

1

23 ++



 −+



=

The FIR1 and FIR2 provides the following speedup,

dam

dam

TkT
k

T
k

TkTkkT

T

T
S

)2()
2

1
(

2

)1()1(

3

1
3

++−+

−+−+
==

sdam

dam

T
k

TkT
k

T
k

TkTkkT

T

T
S

2
)1()1

2

1
(

2

)1()1(

2

1
2

+−++−+

−+−+
==

This illustrates that the speedup is not only the function of the
execution time of the multipliers and adders, but also the delays.
If the delays (or moving data from memory) take relatively long
comparing to the multipliers and adders, then there will be very
little speedup from the vectorization.

3.2 IIR

Since the IIR filter operation is based on cascading the multiple
copies of the canonical IIR kernels, the performance can be
measured by comparing the delay of the single kernel. Suppose
the kernel has N history buffers, then the kernel requires

(1+2N) multiplication + 2N addition
N delays

The sequential execution of the kernel takes a total of

dam NTNTTNT +++= 2)21(1

The vectorization reduces the total delay to

adm TNTTNT 2)1(2 +++=

Therefore the speedup is

dam

adm

NTNTTN

TNTTN

T

T
S

+++
+++==

2)21(

2)1(

1

2

and it is a function of the execution time of the multiplier, adder,
and move instructions.

3.3 FFT

The entire process of FFT routine repeats the butterfly kernel N
times per each stage. There are a total of N2log stages to

complete the N-point FFT. Thus, the total number of instructions
of sequential program is

NN 2log addition + NN 2log subtract

)1(log
2 2 −





N
N

 complex multiplication

The vectorization reduce it to

N
N

2log
2

 addition + N
N

2log
2

 subtract

)1(log
2 2 −





N
N

 complex multiplication

If we consider the subtract takes the same as the addition, then
the execution time of the sequential program is

ca T
N

TNNT
2

log2 21 +⋅=

where aT and cT are the execution time of adder and complex

multiplier, respectively.

The vectorization reduces the total delay to

ca T
N

TNNT
2

log22 +⋅=

Thus, the speedup is

ca

ca

T
N

TNN

T
N

TNN

T

T
S

2
log

2
log2

2

2

2

1

+⋅

+⋅
==

It indicates that the speedup is a function of the execution time of
adders and complex multiplier.

4. EXPERIMENTAL RESULTS

A set of experiments has been conducted in order to measure the
performance of the vectorization both in a practical operating
environment and ideal benchmark cases. We have chosen
programmers who are skilled in digital signal processing
applications, but relatively poor in programming language as
well as the 3DNow! TM technology. The skill set is to demonstrate
the learning curve in adapting their applications to the new
technology.

The novice programmers were asked to program the DSP
modules and convert them into the vector operations by utilizing
the in-line assembly of C/C++ programming language. It took
them about a week in the conversion after two months of work in
developing a series of demonstration programs as well as the

benchmarks. Then, we run the DSP routines on AMD-K6-2
300Mhz microprocessor to measure the performance.

1 .1

1 .2

1 .3

1 .4

1 .5

1 .6

1 .7

1 2 3 4 5 6 7 8 9 10

The Tap S ize (F IR &IIR) and FFT B lock S ize

S
p

ee
d

 U
p

ideal F IR ideal IIR
ideal FFT ac tua l F IR1
ac tua l F IR2 ac tua l I IR
ac tua l FF T

Figure 1- Performance Result

Figure 1 shows the result of the performance measurement. The
ideal case is based on the analysis examined earlier, and the
actual cases are obtained from running the equivalent programs.
The tap size of the IIR filters indicates the total number of filter
coefficients. The FIR filters utilize taps that are the multiple of
the figure indicated. For example, 1 means 20 taps and 10 is 50
taps for the FIR filters. The block size of FFT routine indicates
the stage of the FFT routine, therefore the block size, n, means
2n-point FFT routine.

The ideal speedup is close to 1.5. On the other hand, the actual
speedup turns out to be approximately 1.3. We have discovered
that the discrepancy is due to the overhead caused by the in-line
assembly of the C/C++ as well as the data movement from the
memory to vector register that we didn’t take into the
consideration for the ideal cases. This illustrates that the speedup
is between 1.3 and 1.5 regardless of the methodology.

We have also applied the FIR-1a routine to wavelet transforms
with 9-tap FIR filters introduced by Shapiro [7]. Profiling of the
analysis and synthesis filters of the wavelet transforms indicates
that more than 40% of the total execution is still occupied by
non-filter operations as shown in Table 1.

Table 1 - Profiling of Wavelet Transforms

Analysis Transforms Synthesis Transforms

total 3037.883 2324.189
filters 1771.544 1259.198

% 58.32% 54.18%

Two separate optimizations were attempted: vector move and
vectorized FIR filter. The vector move replaces all the move
instructions with the 3DNow!TM instructions, and the other is to
plug in the previously developed FIR routine into the wavelet
transforms. Table 2 shows the result of performing the wavelet
transforms: analysis filter first, and then synthesis filter on
Mandrill image of size 512x512 with 6 level transforms [8]. It
indicates that the speedup reaches up to 1.5 even if a half of the
program is not vectorizeable.

Table 2 - Speedup of Wavelet Transforms

Analysis-Synthesis Speedup

Reference 427643256 1.00
Vector Move 365428457 1.17
Vectorization 336622616 1.27
Both of them 280416549 1.53

Mandrill image has been restored from EZW algorithm [7][8].
Figure 2 shows the image quality from the compression process.
The difference image is gray level indicating

)ˆ(16127 xx −⋅+ where x and x̂ are the original image and the

restored, respectively. A test pattern is also included for the
intensity level of 8)ˆ(8 ≤−≤− xx . The objective measurement

indicates that the restored image is 45.28dB PSNR compared to
the original image while the compression ratio is still above the
unity [8].

Figure 2 - Image Quality of 3DNow!TM Technology

5. CONCLUSION

A set of DSP routines is vectorized with the 3DNow!TM

technology. The vectorization increases the performance of DSP
routines with a speedup ranging 1.3 through 1.5. Our experiment
indicates that the programming language heavily affects the
performance. The in-line assembly of C/C++ introduces an
overhead, but it makes the vectorization process substantially
simpler by allowing free accesses to C/C++ variables.

We have also applied the same techniques to actual multimedia
applications such as wavelet transforms. This experiment
indicates that the 3DNow!TM technology increases the speedup
up to 1.5 even if there are substantial portions of the program not
vectorized. The 3DNow!TM technology is relatively easy to
program due to the simplicity of the architecture as well as the
small number of instruction set.

6. ACKNOWLEGEMENTS
The authors would like to thank Ned Finkle and Jim MacDonald
for their support at Advanced Micro Devices.

7. REFERENCES
[1] R. Ernst, J. Henkel, and T. Benner, “Hardware-Software

Cosynthesis for Microcontroller,” IEEE Design & Test of
Computers, December 1993, pp. 1199-1208.

[2] I. M. Wolfe, High Performance Compilers for Parallel
Computing, Addison-Wesley Publishing Company, 1996.

[3] V. Zivojnovic, S. Ritz, and H. Meyr, “Retiming of DSP
programs for optimum vectorization,” Proceedings of the
ICASSP’94, vol. 2, 1994, pp. 465-468.

[4] H. Kalish and J. Isaac, The AMD-K6 3D Processor, Abacus,
1998.

[5] A. V. Oppenheim, and R. W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989.

[6] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley, 1987.

[7] J. Shapiro, “Embedded Image Coding Using Zerotrees of
Wavelet Coefficients,” IEEE Trans. Signal Processing, vol.
41, 1993, pp. 3445-3462.

[8] G. Choe and E. E. Swartzlander, Jr. “Merged Arithmetic for
Computing Wavelet Transforms,” Proceedings of the 8th

Great Lakes Symposium on VLSI, 1998, pp. 196-201.

