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ABSTRACT

We present a method for estimating threshold values for signal de-
tection and classification systems in which a prescribed value of
false alarm probability is needed. The threshold values are deter-
mined directly from observed test statistic data without knowledge
of the probability distribution of the data. Our method uses the
concept of tolerance intervals from nonparametric statistics.

1. INTRODUCTION

The ability to accurately estimate constant false alarm rate (CFAR)
thresholds in an environment in which the distribution of the noise
or clutter is both unknown and possibly time varying is a criti-
cal requirement in many systems. Difficulty in dealing with these
issues often leads to ad-hoc methods that are unsatisfying theoret-
ically and can breakdown unexpectedly. To avoid these problems
we propose a new method for estimating CFAR thresholds that is
based on tolerance interval analysis [1]-[7]. Strict application of
the original results of Wilks [2], Wald [3], Scheff´e [4] and Tukey
[4, 5, 6] requires statistically independent, real valued samples of
the data. However, we argue that, for applications in signal pro-
cessing, the number of independent samples, can often be replaced
by an effective number of independent samples; which may be es-
timated from the data.

The concept of tolerance intervals has been inappropriately ne-
glected in statistical signal processing. Its’ value was pointed out
to us by Roy Streit. A use of tolerance interval analysis in classifi-
cation has been presented by Streit and Luginbuhl [8]. Their paper
also contains a useful summary of the development of tolerance
interval analysis.

We demonstrate the utility of our method with two simulated
examples which are intended to approximate two different sonar
or radar interference environments.

2. ESTIMATING THE SAMPLE SIZE

In this technique, the accuracy of the result is directly related to the
number of independent samples used in the computation. We can
estimate the number of samples required in the following way. Let
n represent the number of real independent samples chosen from
the available data. LetX denote this set ofn independent samples.
Let X(r) be ther-th order statistic ofX, whereX(1) < X(2) <

: : : < X(n). For continuous distributions the probability that all
of the samples are less than� is [1]:

P (X(n) < �) = F (�)n (1)

whereF (x) is the cumulative distribution function for the un-
known distribution. Similar results can be derived for discrete dis-
tributions (e.g. [6, 7]); however in this paper we will limit our-
selves to considering only those cases in which data is drawn from
continuous distributions.

LetX be drawn from a noise or clutter source under consider-
ation, and let� = 1 � F (�) be the desired false alarm rate.1 The
quantile� is the threshold we seek to achieve this false alarm rate.
To insure the proper functioning of our algorithm, we want this
quantile to lie within the range of our independent samples. That
is we wishX(1) < � < X(n). Therefore we choosen so that the
probability given by equation (1) poses an acceptable level of risk.

For example, if the desired false alarm rate� is five percent,
then forn = 100 independent real samples drawn from a continu-
ous distribution the probability that all of the samples are less than
� is F (�)n = 0:95100 = 0:0059. If this probability constitutes
an acceptable level of risk then we may be satisfied with 100 in-
dependent samples. If this is not the case then we can increasen
until the risk is acceptable.

More directly, from equation (1) above, letR = P (X(n) <
�) = F (�)n be a specified level of risk that the true false alarm
threshold is greater than the largest order statisticX(n). We then
estimate the required number of samples as:

n = dlog(R)= log(1 � �)e (2)

wheredxe indicates thatx is to be rounded up to the next
integer.

It is assumed above and throughout this paper that any esti-
mate ofn is also consistent with estimates of the time or space
intervals over which the data can be assumed to be stationary. If
these stationary intervals (in samples) are longer thann then the
algorithms presented here will work well. If this is not the case,
then we may decide to reduce the sample sizen to the point that it
becomes consistent with these intervals. If following this, the risk
R becomes too high, then we may decide to suffer the effects of
mixing data drawn from statistically different distributions which
result from using a larger value ofn, or we may choose another

1Note that specifying� is equivalent to specifyingF (�) so that knowl-
edge ofF (x) is unnecessary.



approach to estimating the false alarm rate threshold. However,
we note that any other approach based on sampled data must also
address these same trade-off issues.

3. ESTIMATING THE THRESHOLD

From [1] we know that for continuous distributions the probability
that the quantile� lies between the order statisticsX(r) andX(v)

whereX(r) < X(v) is:

P (X(r) < � < X(v)) =

v�1X
k=r

�
n
k

�
F (�)k(1�F (�))n�k (3)

Using this general result we can compute the specific proba-
bility that the true threshold� lies between any two consecutive
order statistics by lettingr = 1; 2; : : : ; n� 1 andv = r + 1. For
example, if we selectn = 100, � = 1�F (�) = 0:05 and assum-
ing we have a continuous distribution we can use equation (3) to
obtain the result shown in figure (1).

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Interval Number

P
ro

ba
bi

lit
y 

Q
ua

nt
ile

 Is
 In

 In
di

ca
te

d 
In

te
rv

al

Probabilty Quantile Is In The Indicated Interval For n = 10 0 And F(x) = 0.95

Figure 1: P (X(r) < � < X(v) for r = 1; 2; : : : ; n � 1 and
v = r + 1 whenn = 100 and� = 0:05.

As indicated, the true, but unknown, threshold� is most likely
in the interval between order statisticsX(95) andX(96) with prob-
ability P (X(95) < � < X(96)) = 0:1830.

For this special case of computing the probabilities that the
true threshold� lies between any two consecutive order statistics,
we have a simple formula for determining the interval which has
the largest probability [9]. This interval is computed as:

I = [(n + 1)F (�)] = [(n+ 1)(1� �)] (4)

where[x] is the integer portion ofx. If (n + 1)(1 � �) is
an integer thenI identifies the second of two consecutive intervals
which will have the largest (but equal) probability of containing�.
That is, if(n+1)F (�) is an integer then the intervals specified by
I � 1 andI will have equal probabilities and this probability will
be larger than that of any other interval.

The steps required for estimating a threshold� may now be
enumerated.

1. We make an initial determination of the number of inde-
pendent noise or clutter samples required to estimate� for
a given false alarm rate� as explained in section 2.

2. Given this estimate we select intervals defined by the order
indicesr andv and computeP (X(r) < � < X(v)) for
every selected interval using equation (3). Note that if we
choose the intervals defined byr = 1; 2; : : : ; n � 1 and
v = r + 1 as in the example above, we may then use equa-
tion (4) to determine, in one step, the interval which has the
largest probability. If this strategy is used, then the quan-
tity (n + 1)(1 � �) should be checked to determine if it
is an integer and appropriate action should be taken in the
following steps if it is.

3. Using either equation (3) or (4), we adopt a maximum like-
lihood point of view, and select the interval or intervals
associated with the largest probability as being the most
promising one to base our estimate of� on.

4. We collectn independent noise or clutter samples, order
them, extract those ordered samples which constitute the
selected interval and with them compute our estimate of�.

To illustrate, in the example given above we found that the max-
imum interval was bounded byX(95) andX(96). In this case
we might estimate� by averagingX(95) andX(96) or by simply
choosing one or the other of these order statistics as our estimate.

4. ESTIMATING A CFAR THRESHOLD

The method of estimating the false alarm rate threshold� outlined
above assumes a stationary distribution. However, in many real
world cases the distribution of the environmental noise or clutter
is not only unknown, but non-stationary as well. Fortunately, the
above technique is flexible enough to accommodate these cases as
well. The steps in the algorithm are as follows.

1. We determine the number of independent samples and par-
ticular order statistics required to determine the desired thresh-
old as outlined in section 3.

2. We estimate a sample interval (in time or space, depend-
ing on the application) such that samples separated by more
than this amount can reasonably be assumed to be indepen-
dent. For example, in typical time domain applications the
CFAR threshold is applied after some filtering operation. In
these cases one could estimate the equivalent noise band-
width of the filter and down sample the filter output by the
inverse of this bandwidth in samples.

3. At predetermined intervals of time or spacen independent
samples are collected, sorted, the order statistics are chosen,
and a new threshold� is computed and applied to the input
data stream.

An example of a sliding (lag) window version of this algorithm
is show in figure (2).

Note that once a target signal is detected, the processing de-
scribed above must be altered to account for the signal energy that
is being added to the data stream. One approach is to simply hold
the current threshold until the signal has passed. This approach as-
sumes that the signal energy is reasonably constant over the dura-
tion of time the signal is present. However if the signal is present



for an extended period of time, and its energy is also changing
over that time, we would like to be adaptive to that situation. In
this case, one strategy is to construct a tolerance interval constant
false rejection rate algorithm in a manner similar to the one de-
scribed here and use it to determine when the signal has passed. In
this case the threshold estimate would (most likely) be computed
from thesmallerorder statistics and individual samples from the
data stream would be tested to see if they fellbelowthe estimated
threshold.

Other applications, such as automatic gain control (AGC) prob-
lems, and other variations on the basic algorithm are easily imag-
ined.
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5. AN EXAMPLE USING INDEPENDENT SAMPLES

In order to illustrate the performance of CFAR algorithms designed
in this manner we select the algorithm shown in figure (2) as an
example. The performance of this algorithm is demonstrated first
in figure (3) by superimposing the computed time varying CFAR
thresholds on top of the input data stream. For this example the in-
put data are independent samples of simulated non-Gaussian clut-
ter. The independence of the input samples eliminated the need
for down sampling so this was not done. The design probability of
false alarm was chosen to be five percent. A buffer length of 100
samples was used, and with no down sampling this became a sam-
ple by sample sliding window of that length. The order statistic in-
tervals required in step (2) of the algorithm design sequence given
in section 3 were chosen to ber = 1; 2; : : : ; 99 andv = r + 1.

These selections result in the same quantile probability graph
as that shown in figure (1). As noted earlier we see that the thresh-
old � is most likely in the interval between order statisticsX(95)

andX(96) with probabilityP (X(95) < � < X(96)) = 0:1830
(continuous distribution assumption). For simplicity we choose
the estimate of the threshold� to be the 96-th order statisticX(96).
On average, a selection such as this should produce a slightly con-
servative estimate of�. That is one that produces a false alarm
rate slightly less than the designed false alarm rate of five percent.
The observed false alarm rate of the 10,000 samples of the clutter
shown in figure (3) was 0.0508 (5.08 percent) in good agreement
with the target design.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

−0.5

0

0.5

1

1.5

Sample Number

S
am

pl
e 

V
al

ue

A Tolerance Interval CFAR Algorithm

Figure 3: Typical performance of the tolerance interval CFAR al-
gorithm of figure (2) in simulated clutter. The threshold value as a
function of sample number is represented by a solid line while the
data values are represented by dots.

6. AN EXAMPLE USING CORRELATED SAMPLES

In this section we attempt to demonstrate the utility of our ap-
proach when applied to a simulated sonar problem. In figure (4)
we see a spectrogram of the input signal in Gaussian noise and
non-Gaussian clutter. The signal is a two tone burst that begins at
5 seconds and has a duration of 0.125 seconds. The two compo-
nent frequencies are at 100 and 300 Hz. The input signal to noise
ratio is 0 dB. The sampling rate is 1000 Hz. For the purpose of
demonstration only, we employ the MUSIC algorithm [10] as our
detector. The subspace updates required by the MUSIC algorithm
are performed by the FAST algorithm [11].

Figure (5) shows the adaptive threshold version of our algo-
rithm applied to the output of the MUSIC algorithm. The false
alarm value� that we designed for in this example is 0.001. The
level of riskR was set to 0.1. From these values and equation (2)
we compute the number of independent samples needed for each
threshold update to ben = 2302. To be strictly true to our stated
algorithm (section 4), we should down sample, or otherwise decor-
relate, the output of the MUSIC algorithm in order to obtain these
samples. However, in order to illustrate the effect of using corre-
lated data with our algorithm, we apply it directly to the output of
the MUSIC algorithm. We see from figure (5) that our measured
false alarm rate in this case is 0.0008, slightly smaller than the
designed for value of 0.001. Qualitatively, this is a common oc-
currence when processing correlated data with this algorithm; and
is linked to the method by which the threshold is chosen.

Finally, we note that we have used a ”split window” clutter
buffer in this example. That is, we have introduced a processing
delay (not shown) into the system so that the clutter buffer of figure
(4) consisted of ”past” and ”future” clutter samples, relative to the
test sample. We see this architecture reflected in the threshold plot
in figure (5); i.e. the threshold rises in anticipation of upcoming
target or clutter spikes in the data.
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Figure 4: The input signal in clutter. Input SNR = 0 dB.
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Figure 5: Adaptive threshold applied to output of MUSIC detector.
Designed PFA = 1e-3. Measured PFA = 7.93e-4.

7. CONCLUSIONS

We have presented a simple, general and flexible method for com-
puting adaptive and non-adaptive CFAR thresholds based on tol-
erance interval analysis. Implementation requires few or no arith-
metic operations. The use of tolerance intervals eliminates the re-
quirement that the distribution of the input data must be known.
Further, the only requirements placed on the data are that the data
be real valued and that the samples upon which the analysis is
based be independent. Specific examples of the construction of
an adaptive CFAR algorithm were given and its performance was
demonstrated.
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