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ABSTRACT

We apply a general procedure of the author to choose
penalty parameters in total variation denoising.

1. INTRODUCTION

A number of methods have been presented in recent
years for the estimation of discontinuous functions in
ill-conditioned inverse problems. Thus there is the
method of graduated nonconvexity [1], methods based
on Markov Random �elds [5], Lp regularisation [2] and
wavelets [4]: references to other methods can be found
in [12] and [7].

More recently the method of total variation denois-
ing has been developed successfully [13], [9] also going
under the name anisotropic di�usion [14],[8]. An im-
portant feature of this method is that the Tikhonov
performance index is nonlinear in the reconstructed
function. In any case in all these methods there is
the problem of choosing a Tikhonov regularisation or
bandwidth parameter, which is the topic of this paper.

There are two well known general approaches ca-
pable of delivering bandwidth parameter estimates in
non-linear ill-conditioned inverse problems: maximum
likelihood and cross validation. Maximum likelihood
requires a stochastic model for the function while cross
validation treats the function deterministically.

But both methods su�er from a problem of com-
putational complexity. However recently the author
[10] has observed that another deterministically based
method (unbiased risk estimation) can be extended ex-
actly to nonlinear cases. The technique is computation-
ally much simpler than maximum likelihood or cross
validation (but similar to the latter) and beyond solu-
tion of the Euler equations associated with the minimi-
sation of the Tikhonov criterion requires only a com-
putation of a trace of a matrix inverse.

In this paper we apply the method to total variation
denoising [9], [13]. This seems to be the �rst develop-

ment of an automatic method for choosing regularising
parameters for that technique.

2. TOTAL VARIATION DENOISING

For simplicity we describe the technique in one dimen-
sion. Consider the problem of estimating the possibly
discontinuous function f(t) on [0,1] given noisy data

yi = f(i=n) + �i ; i = 1; :::; n

where �i is a white noise of variance �2 . The total
variation denoising (TVDN) method chooses f to solve
the Tikhonov problem

f̂� = arg:minJ(f)
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However, the continuous functional in J(f) is not di�er-
entiable and this causes di�culties with optimisation.
In [9] a steepest descent procedure is used giving a non-
linear di�usion equation. More recently [13] have used
a standard molli�er method to perturb the nonsmooth
optimisation problem to a smooth one. Thus J(f) is
replaced by

J(f) =
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1

2 dx (2.1)

where 
 is the small molli�er parameter.
It is worth noting here several important properties

that this molli�ed regularisation function or potential
�(x) = (x2 + 
2)

1

2 � 
 which have not hitherto been
noted. Firstly it obeys the four properties prescribed
by [12]- convexity; symmetry; allows discontinuity (ie.
�(x) < x2 for large x ; for �xed x is monotonic in 

). Of course there is also positivity and uniqueness (ie.
�(x) = 0) x = 0).

Secondly it obeys all the properties listed by [7] but
additionally has the very important feature of being
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Figure 1: Plot of Potential function characteristics

convex on (�1;1). The only other known potential
obeying this is g4 of [7]. This global convexity is crucial
for the convergence properties mentioned below but its
signi�cance seems to have been missed by [7]. Also
the anisotropic di�usion algorithm is well posed in the
sense of [14] although it does not enjoy the convergence
properties described below. In Fig.1 we have plotted an
example of the potential function and its characteristics
for 
 = :1.

To calculate f̂ [13] develop an iterative procedure
they call lagged di�usion. We discretise (2.1) and de-
velop a sort of pseudo Gauss Newton algorithm which
is much the same as that of [13]. The resulting iteration
is

(I + n�DTA�1
(k�1)D)f(k) = y (2.2)

where D is an (n-1)xn di�erencing matrix; f(k) is the

kth iterate of f = (f1:::fn)
T and A(k) = diag(a

(k)
2 :::a

(k)
n )

and ar = [(fr�fr�1)
2n2+
2]

1

2 . The matrix DTA�1D
has tridiagonal structure so the solution of (2.2) is rapid.
Also it is possible, using arguments similar to those in
[3] to show global convergence of (2.2).

3. ESTIMATED RISK

We introduce a reconstruction performance measure
(the risk or discrepancy)

R� = Ejjf � f̂�jj
2

= E

Z
(f � f̂�)

2dx

Ideally we would like to minimise R� with respect to
� . However, R� is unknown and so not computable
and the idea is to �nd a computable unbiased estimator
of R� and minimise that instead. Remarkably such a

statistic can be found. If the �i are Gaussian then it
can be shown [11], [10] that an unbiased estimator of
R� is

R̂� = n�2 +�n
1 e

2
i � 2�2�n

1@ei=@yi

ei = yi � f̂i = yi � f̂�;i

The general use of this estimator for ill conditioned
inverse problems was suggested in [10] although it has
been used in two special cases before.

For the current setting of total variation denoising
it can be shown that

�n
1

@ei
@yi

= ntrace(I + n�
2DTK�1D)�1

K = diag(a3r)

4. RESULTS

In Fig.2 is a plot of SURE for the blocky function used
by [13]. We chose 
 = :0001; snr = 4 to compare
with their results. Here signal to noise ratio (snr) is
a power ratio but is not reexpressed in dB. There is
a well de�ned minimum but SURE is otherwise rather

at near that minimum; this means that several val-
ues of � in that vicinity should be tried. In Fig.3 we
show the reconstruction corresponding to the minimis-
ing � = :005. In Fig.4 we show the reconstruction
corresponding to the value � = :01 used by [13]. It was
not commented upon by [13] but the latter estimate
shows large biases at the peak and trough associated
with the narrow block. On the other hand while the es-
timate corresponding to the minimser of SURE is a bit
less block like it has much smaller bias at those peaks
and troughs. The method used by [13] to choose the
penalty parameter is known [6] to lead to oversmooth-
ing in Sobolev regularisation and we are seeing that
same behaviour here.

5. SUMMARY

In this paper we have presented an automatic method
of tuning parameter choice for total variation denois-
ing. The method is computationally much simpler than
cross-validation. Future work will deal with estimation
of the noise variance, extension of the technique to han-
dle correlated noise and some theoretical performance
analysis of the method.
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Figure 2: Plot of SURE for blocky function
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Figure 3: Plot of data and estimate, � = :005

0.2 0.4 0.6 0.8

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

n=300, snr=4

data (.) and function (x)

0.2 0.4 0.6 0.8

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

gam=0.0001  ,h=0.01

estimate (−), function (x)

Figure 4: Plot of data and estimate, � = :01

[2] C. Bouman and K. Sauer. A generalised Gaussian
image model for edge preserving map estimation.
IEEE Trans. Im.Proc., 2:296{310, 1993.

[3] D.C. Dobson and C.R.Vogel. Convergence of an it-
erative method for total variation denoising. SIAM
Jl.Num.Anal., to appear, 1996.

[4] D.L. Donoho and I.M. Johnstone. Adapting to
unknown smoothness via wavelet shrinkage. Jl.
Amer. Stat. Assoc, 90:1200{1224, 1995.

[5] D. Geman and G. Reynolds. Constrained restora-
tion and the recovery of discontinuities. IEEE.
Trans. Patt. Anal. Machine Intell., 14:367{383,
1992.

[6] P. Hall and D.M. Titterington. Common strtuc-
ture of techniques for choosing smoothing param-
eters in regression problems. Jl. Royal. Stat. Soc.
Ser. B, 49:p.184{198, 1987.

[7] S.Z. Li. On discontinuity-adaptive smoothness pri-
ors in computervision. IEEE. Trans. Patt. Anal.
Machine Intell., 17:576{586, 1995.

[8] P. Perona and J. Malik. Scale-space and edge de-
tection using anisotropic di�usion. IEEE. Trans.
Patt. Anal. Machine Intell., 12:629{639, 1990.

[9] L.I. Rudin, S.Osher, and E.Fatemi. Nonlinear
total variation based noise removal algorithms.
Physica D, 60:259{268, 1992.

[10] V. Solo. A SURE-�red way to choose smoothing
parameters in ill-conditioned inverse problems. In
Proc. IEEE ICIP96. IEEE, IEEE Press, 1996.

[11] C. Stein. Estimation of the mean of a multivari-
ate normal distribution. Ann. Stat., 9:1135{1151,
1981.

[12] R.L. Stevenson, B.E. Schmitz, and E.J. Delp. Dis-
continuity preserving regularization of inverse vi-
sual problems. IEEE Trans Sys Man Cybernetics,
24:455{469, 1994.

[13] C.R. Vogel and M.E.Oman. Iterative meth-
ods for total variation denoising. SIAM Jl. Sci.
Stat.Comp., 1996.

[14] Y.L. You, W.Xu, A.Tannenbaum, and M.Kaveh.
Behavioural analysis of anisotropic di�usion in im-
age processing. IEEE Trans. Im.Proc., 5:1539{
1553, 1996.


