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ABSTRACT

A new method for prosodic word boundary detection in
continuous speech was developed based on the statistical
modeling of moraic transitions of fundamental frequency
(F0) contours, formerly proposed by the authors. In the
developed method, F0 contours of prosodic words were mod-
eled separately according to the accent types. An input ut-
terance was matched against the models and was divided
into constituent prosodic words. By doing so, prosodic word
boundaries can be obtained. The method was �rst applied
to the boundary detection experiments of ATR continu-
ous speech corpus. With mora boundary locations given in
the corpus, total detection rate reached 91.5 %. Then the
method was integrated into a continuous speech recognition
scheme with unlimited vocabulary. A few percentage im-
provement was observed in mora recognition for the above
corpus. Although all the experiments done in closed con-
ditions due to the corpus availability, the results indicated
the usefulness of the proposed method.

1. INTRODUCTION

In view of the importance of prosodic features in the human
process of speech perception, several works have been con-
ducted aiming at using prosodic features in machine speech
recognition process. In the recognition system developed
under the Verbmobil project, for instance, prosodic fea-
tures are used to determine whether the input utterance
is declarative or interrogative [1]. Although the reported
results were favorable, we should say that the usage is lim-
ited only to a small part of the recognition process. More
positive use of prosodic features is necessary for future ad-
vancements in speech recognition.

Several methods have already been developed to �nd
out syntactic structures of input speech using prosodic struc-
tures. However, their performance is rather limited and,
accordingly, they are not utilized in current speech recog-
nition systems. This is because most of them attempted to
detect prosodic events relating to syntactic boundaries only
prior to the main recognition process. From this point of
view, we have been developing methods to utilize segmental
information also, which is assumed to be obtained through
the phoneme recognition process. One such method is the
statistical modeling of F0 contour transitions in mora units

[2]. Di�erent form the case of segmental features, model-
ing in frame units will not give a good result. This is be-
cause prosodic features are those of supra-segmentals and
should be treated in longer periods. Taking into account
that \mora" is the basic unit of Japanese pronunciation
(mostly coinciding with a syllable) and that its relative
F0 value is important for accent-type perception, we have
developed the moraic transition modeling [2]. Since the
modeling is time-aligned to segmental boundaries, it can
be rather easily incorporated into phoneme-based speech
recognition process.

We already have applied this modeling for syntactic
boundary detection and accent type recognition of Japanese
[2], [3], [4]. Especially, in [4], we modeled F0 contours of
prosodic words and succeeded to simultaneously detect and
recognize prosodic word boundaries and accent types with
rather high rates. A prosodic word is de�ned as a word or a
word chunk corresponding to an accent component and can
be expressed clearly by the F0 contour generation model
[5]. No results, however, were given there when we applied
the developed method to speech recognition. We newly con-
ducted continuous speech recognition experiments by incor-
porating the method into the recognition process.

In the current paper, after a brief explanation on the
prosodic word models, results of boundary detection exper-
iments will be given. Also, we will show that the speech
recognition rate can be improved by the method.

2. STATISTICAL MODELING OF F0

CONTOURS

2.1. Outlines

The developed method models prosodic words, di�erently
according to their accent types and presence/absence of
succeeding pauses. The prosodic word models are then
matched against input utterances to obtain prosodic word
sequences with their accent types. Since an input utterance
can be regarded as a sequence of prosodic words, prosodic
word boundaries can be detected simultaneously. Each
moraic F0 contour is represented by two codes: one for
representing the contour shape (shape code) and the other
representing the average F0 shift from the preceding mora
(�F0 code).



Figure 1 shows the process for the prosodic word bound-
ary detection and accent type recognition. For an input
speech, its F0 contour in logarithmic scale is �rst extracted
and then segmented into mora units using the mora bound-
ary information obtained by the phoneme recognition pro-
cess. A set of shape and �F0 codes is assigned to each mora-
ic F0 contours to obtain a double code sequence. Finally,
this sequence is matched against the prosodic word models
and the results is obtained as accent types of constituting
prosodic words and prosodic word boundaries.

Input Speech

Type 0

Type 1

Type N

a

ra yu

ru

Acoustic Analysis

Fundamental Frequency
Segmental Information

Phoneme Recognition

Mora Boundaries
Pauses

Clustering (Shape)
Moraic F0
 Contour

Average F0
   of Mora

Clustering (∆F0)

Voiced / Voiceless

Code Sequence
       (Shape)

Code Sequence
         (∆F0)

       Prosodic Word Models
with Word Sequence Grammar

     Accent Types 
Prosodic Boundaries

Coding

Accent Type Recognition

Figure 1: Method of prosodic word boundary detection and
accent type recognition.

2.2. Shape Codes

Each segmented moraic F0 contour may di�er in length and
frequency range and should be normalized before shape cod-
ing. Currently, normalization is conducted simply by shift-
ing the average value of a moraic F0 contour to zero and
by linearly warping the contour to a �xed length. Since the
derivative of an F0 contour is an important feature charac-
terizing prosodic events, it was preserved during the warp-
ing process by conducting the same warping also along the
log-frequency axis.

Shape codes were decided by clustering 983 moraic F0

contours without voiceless part, selected from 85 sentence
utterances by a male announcer (speaker MYI) on task SD
(a pile of sentences without de�nite context to each other)
included in the ATR continuous speech corpus. As the
result, 9 clusters were obtained and named as codes 3 to
11 [4]. Two additional codes 1 and 2 were also prepared
respectively for pauses and voiceless mora. These 11 codes
were assigned to moraic F0 contours of input speech as fol-
lows:

1. A pause period was divided into 100 ms segments
from the beginning. They were named as pause morae
and code 1 (pause code) was assigned. Code 1 was
assigned to the last segment, which would be shorter
than 100 ms.

2. A mora whose voiced portion does not exceed 10 %
of the whole length was called as voiceless mora and
code 2 was assigned.

3. For other mora (voiced mora), one of the codes 3
to 11 was assigned based on the minimum distances
between its moraic F0 contour and the averaged F0

contour of each cluster. Voiceless regions included in
moraic F0 contours were excluded from the distance
calculation.

2.3. �F0 Codes

Clustering was conducted by selecting two consecutive mora-
ic F0 contours from the same corpus as used in the shape
code clustering. Only pairs of voiced morae were select-
ed, and, consequently, 11,779 pairs were used for the clus-
tering. After calculating average F0 for voiced portion of
each voiced mora, di�erences between the averages of the
�rst and the second morae were calculated for all the pairs.
Then, the standard deviation � of the distance was used for
the index of clustering; simply dividing 3� region centered
0 distance into 9 parts of equal ranges and assigning one of
codes 2 to 10 to each part [4]. Codes 1 and 11 were used to
represent the distances exceeding 3� region.

In order to assign one of these codes to each moraic
F0 contour, we de�ned average F0 of a voiceless mora as
follows:

1. For a pause mora, its average F0 is assumed as 0.

2. For a voiceless mora, its average F0 is calculated as
the interpolation between the average F0 of its pre-
ceding voiced (or pause) mora and that of its suc-
ceeding voiced (or pause) mora.

2.4. Prosodic Word Models

In Tokyo dialect of Japanese, an n-mora word is uttered
with one of n + 1 accent types, which are usually denoted
as type i (i = 0 � n) accents and are distinguishable to
each other from their high-low combinations of F0 contours
of the consisting morae. Letter \i" indicates the dominant
downfall in F0 contour occurring at the end of ith mora.
Type 0 accent shows no apparent downfall. Discrete HMMs
with left to right con�guration in HTK software (version
2.0) were adopted to model the prosodic words. The train-
ing and the recognition were done by EM algorithm and
Viterbi algorithms respectively.

The following 7 models were trained using 503 sentence
utterances selected from the ATR continuous speech cor-
pus also by speaker MYI and on task SD. Total number of
prosodic words is 3,365 with 15,966 (non-pause) morae and
658 pause periods.

T0 and T0 P : for type 0 (or type n) prosodic words,

T1 and T1 P : for type 1 prosodic words,

TN and TN P : for types 2 to n� 1 prosodic words,



P : for pauses.

T0, T1 and TN models are for prosodic words not fol-
lowed by a pause, while T0 P, T1 P and TN P are for
prosodic words followed by a pause. \P model" was pre-
pared to absorb pause periods in an utterance, though a
pause is actually not a prosodic word. The number of states
was 3 for TN and TN P models, 2 for T0, T0 P, T1 and
T1 P models, and 1 for P models. A double code-book
scheme was adopted to assign a pair of shape and �F0

codes to each moraic F0 contours. The probability bj(ot) of
observation ot being generated at state j at time t is given
by:

bj(ot) = [Pjs(ost)]
s [Pjr(ort)]

r (1)

where Pjs(ost) and Pjr(ort) are probabilities of state j gen-
erating the shape code ost and the �F0 code ort respectively.
Symbols s and r are stream weights for shape codes and
�F0 codes, both of which were set to 1.0 for the current
experiments.

2.5. Grammar for prosodic words

As for the grammar of prosodic word sequences, a sim-
ple heuristic grammar or bi-gram was used. The heuristic
grammar describes the constraint on linking prosodic word
to a pause, that is, \An X P model must precede a P model,
and the �nal prosodic word of a sentence must be modeled
by X P (X=T0, T1 or TN)." Bi-gram was constructed using
the same training data for the prosodic word models.

3. DETECTION OF PROSODIC WORD

BOUNDARIES

Fifty utterances were selected out of 503 utterances ex-
plained in section 2.4 and were used as the testing data
for the boundary detection experiment. The total number
of prosodic words in the testing data was 326. Although
accent type recognition is included in the method, only the
results of prosodic word boundary detection will be given
here. Refer [4] for the results on accent type recognition.
Di�erent from the next section, experiments in this section
were conducted using the mora boundary information given
in the database. Table 1 shows prosodic word boundary de-
tection rate Cb, non-boundary detection rate Cn and total
detection rate C. These rates are de�ned as:

C =
Hb +Hn

Nb +Nn

(2)

Cb =
Hb

Nb

(3)

Cn =
Hn

Nn

(4)

where Nb, Nn, Hb and Hn respectively denote the numbers
of total prosodic word boundaries in the testing data, mora
boundaries not prosodic word boundaries, mora boundaries
correctly judged as prosodic word boundaries and mora
boundaries correctly judged as not prosodic word bound-
aries. The table also shows the results obtained by the
former method [3]. Since the results should be evaluated as
a compromise of Cb and Cn, it is not clear which prosodic
word grammar will give the better result. However, in both

cases, the proposed method gave better results as compared
to the former method. In the recognition experiments in the
next section, only the bi-gram was used.

Table 1: Result of prosodic word boundary detection

Detection Rate (%)
C Cb Cn

Proposed Constraint 89.85 76.99 92.75
Method Bigram 91.49 72.70 95.72
Method Formerly Proposed 87.66 72.39 91.09

4. CONTINUOUS SPEECH RECOGNITION

4.1. Outlines

The developed method was integrated with a continuous
speech recognition scheme as shown in Figure 2. In order to
clarify the e�ects using prosodically obtainable word bound-
ary information in speech recognition, word dictionary was
not used (unlimited-vocabulary). In the system shown in
Figure 2 recognition is conducted in two stages. The �rst
stage operates without prosodic information and the result-
ing information on mora boundary locations is fed to the
process of prosodic word boundary detection. In the second
step, input speech is �rst segmented into prosodic words us-
ing the prosodic word boundary information thus obtained,
and then mora recognition is re-conducted to get the �nal
results. All the recognition process is programmed utilizing
HTK (version 2.0) software. Conditions of acoustic analysis
are summarized in Table 2.
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Figure 2: Integrated speech recognition system

The following items were arranged for the both stages:

1. Mora dictionary de�ning all the possible morae of
Japanese, including the pause mora.

2. Phoneme HMMs selected from Japanese tri-phone
models trained elsewhere [6].

3. Two types of mora bi-gram: one obtained without
taking prosodic word boundaries into account and
the other obtained with taking into account. The



Table 2: Conditions of acoustic analysis

Sampling frequency 20 kHz
Analysis window Hamming window
Window size 25 ms
Frame shift 10 ms
Pre-emphasis coe�cient 0.97
Feature vector 12MFCC

+ 12�MFCC
+ �Power

Number of �lterbank channels 24

former one was used in the �rst stage and the latter
in the second stage. The bi-gram was constructed
by the back-o� smoothing technique using the same
database used for the prosodic word model training.

4.2. Experimental results

Mora recognition experiments were conducted for the same
50 sentences used in the boundary detection experiments in
section 3. These includes a total of 1,541 morae.

Results are shown in Figure 3, where mora recognition
rates before and after the second stage Cbm and Cam are
de�ned as:

Cam; Cbm =
Nmora �Ndel �Nsubst �Nins

Nmora

(5)
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Figure 3: Result of mora recognition

Here, Nmora, Ndet, Nsubst and Nins respectively repre-
sent total number of morae, number of deletions, number of
substitutions and number of insertions. Ideal Cam denotes
the mora recognition rate when the correct prosodic word
boundary information is obtainable. Horizontal axis of the
�gure is the grammar (mora bi-gram) scale factor S which
means the log-likelihood being multiplied by S before com-
bining it with acoustic likelihood. Improvements from Cbm

to Cam are observable, indicating the validity of the pro-
posed method in speech recognition. The �gure also shows
the results of prosodic word boundary detection. Insertion

error rate Ci is de�ned as:

Ci =
Hi

Nb

(6)

where Hi indicates number of insertion errors. The hori-
zontal bars in the �gure at 77.0 % and 14.7 % respectively
show the boundary detection rate and insertion error rate
when the correct mora boundary information is obtainable.
Di�erent form the case in section 3, boundaries detected
inside the �100 ms region from the correct position were
assumed to be correct.

5. CONCLUSION

A method of prosodic word boundary detection was
presented, where prosodic word F0 contours were modeled
using the statistical modeling of moraic transitions. The
method was integrated into a continuous speech recognition
scheme and evaluated from the viewpoint of mora recogni-
tion rates. Although favorable results were obtained, the
experiments may include a problem on that accent phrase
boundaries labeled in the ATR corpus are not strictly coin-
cide with prosodic word boundaries. They are temporarily
assumed to be identical in the experiments. From this view-
point, we are now planning to construct speech database
with prosodic word labeling. We are also planning to de-
velop a scheme to decrease the search space in speech recog-
nition, using the method.
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