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ABSTRACT

We present a non-linear model transformation for adapting
Gaussian Mixture HMMs using both static and dynamic
MFCC observation vectors to additive noise and constant
system tilt. This transformation depends upon a few com-
pensation coefficients which can be estimated from chan-
nel distorted speech via Maximum-Likelihood stochastic
matching. Experimental results validate the effectiveness
of the adaptation. We also provide an adaptation strategy
which can result in improved performance at reduced com-
putational cost compared with a straightforward implemen-
tation of stochastic matching.

1. INTRODUCTION

Gales and Young [4] proposed parallel model combination
(PMC) for robust recognition of speech corrupted by addi-
tive and convolutional noise. PMC combines HMM mod-
els for clean speech with a model for noise to create HMM
models for noisy speech. The means and variances of static
MFCC features are modified according to a nonlinear func-
tion of the means and variances of clean speech and noise.
One of the strengths of this method is that all of the speech
models can be modified using a single transformation which
depends only upon a few parameters. A similar transform
was studied by Vaseghi and Miller [9].

Our previous work [11] showed that a transformation
similar to those used above can be used to adapt not only the
means of static MFCC coefficients, but also delta and accel-
eration coefficients, to the presence of additive noise. In
brief, clean Mel-scaled Log-spectral Filterbank Coefficient
(MLFC) meansfm1;m2; : : : ;mRg are obtained by apply-
ing the inverse DCT to the clean Mel-scaled Frequency
Cepstral Coefficient (MFCC) means of the HMM output
probability distributions. Noise transformed MLFC means
fm̂1; m̂2; : : : ; m̂Rg for the static and dynamic coefficients
are obtained via the following transformations.
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Figure 1: Gaussian mixture mean transformation for ML
stochastic matching optimization
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within each sub-band filter. The noise transformed MLFC
means are then converted to noise transformed MFCC
means via the DCT.

At a signal to noise ratio of 10dB, transforming the static
coefficients alone increased recognition accuracy to 81% as
compared with the baseline performance of 8.9%. Trans-
forming the dynamic coefficients as well resulted in a fur-
ther 8% increase. Additionally, we showed that the noise
parameters could not only be estimated from pure noise
samples, but also from speech embedded in noise using
maximum likelihood stochastic matching[8].

In this work, we extend this transformation to compen-
sate for constant convolutional distortion by adding a bias
~b = fb1; b2; : : : ; bqg to the MFCC means. See Figure 1.
The bias parameters can also be adapted using ML stochas-
tic matching. Experimental results demonstrate that com-
bining the noise and bias adaptation can successfully com-
pensate for both noise and channel distortions. In addition,
we show that separating the estimation of the noise and bias
parameters results in improved performance with less com-
putational cost. However, the order in which the estimations



are performed is critical when we only have a good initial
value of either~b or ~Pn. Finally, we demonstrate that the
addition of the bias and ML stochastic matching can com-
pensate for the approximations used in deriving the noise
transformation. In particular, we show that using stochas-
tic matching to adapt both channel and noise parameters is
superior to adapting the noise parameters alone, even if the
convolutional bias is known exactly.

2. MIXTURE MEAN OPTIMIZATION VIA ML
STOCHASTIC MATCHING

Adaptation of the bias and noise parametersf~Pn;~bg via
stochastic matching is accomplished through the auxiliary
function Q(�) and the EM algorithm. Due to the non-
linearity of the transformation, it is difficult to find a closed
form solution for the maximization step. Therefore, we
solve the problem iteratively by gradient ascent. At each
iteration, for a system using static and dynamic MFCC co-
efficients,
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Figure 2: Scheme 1 - for good initial bias guess
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Figure 3: Scheme 2 - for good initial noise guess

The coefficientsclk are given by
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The coefficients�mn;d and��mn;d are the variances ofd-
th static and dynamic MFCC component of mixturem in
staten. The probabilityp(t; n;mjW; ~Pn;~b;�X) is the joint
likelihood of distorted observation~Y , mixturem in state
n with known word sequenceW , parametersf~Pn;~bg and
clean speech model�X at time t.

Although it is difficult to find a closed form solution
which maximizes the auxiliary function over both~Pn and
~b, a closed form solution for the maximization over~b for
constant~Pn does exist[8]. Thus, the total computation ef-
fort might be reduced by optimizing over~b and ~Pn sepa-
rately . Two possible combinations for separating the two
optimization steps are depicted in Figures 2 and 3. Scheme
1 shown in Figure 2 optimizes the noise parameters first,
while Scheme 2 shown in Figure 3 optimizes the bias pa-
rameters first. We expect Scheme 1 to perform better if we
have a good initial guesses of the system tilt and Scheme 2
to perform better when we have a good initial guess of the
noise parameters.

3. REMARKS ON NOISE PARAMETERS
OPTIMIZATION

To avoid negative values for the noise power estimates, we
introduce the continuous limiter functionP i

n = ep
i
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stead of optimizing the auxiliary function over~Pn, we op-
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. This term may cause pre-mature
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Figure 4: Recognition accuracy of scheme 1 and 2 for the
first 100 rounds at SNR=10dB in supervised mode

termination of the gradient ascent algorithm if anypin is
under-estimated by a large extent, since the gradient be-
comes almost zero. We refer to this situation as noise pa-
rameter dead-lock. We use the following measures during
maximization step in EM algorithm to prevent parameter
dead-lock:

1. Use initial noise parameters which are over-
estimated.

2. Limit the norm of the parameter update to prevent
parameter dead-lock due to overshoot. In the tests
reported below, we have fixed the ceiling value to
j�(k) � rQj < 5.

4. EXPERIMENTAL RESULTS

4.1. Base-line system

Our baseline system is a speaker dependent connected digit
recognizer trained on theTIMIT Connected Digits Corpus.
The vocabulary consists of 10 digits (’zero’ through ’nine’)
plus ’oh’ and silence. Each digit is modeled by a 9 state left-
right HMM with 5 mixtures per state. For every frame, a 26-
dimensional feature vector is extracted based onC0 to C12

(and delta coefficients) of a 22-nd order MFCC extractor.
The analysis frames were 25ms wide with 15ms overlap.
The testing set is generated by corrupting speech samples
with discrete white Gaussian noise at Signal to Noise Ra-
tio (SNR) of 10dB. Channel distortion is simulated by sup-
pressing 10-th to 22-nd MLFC’s by a factor of 100, corre-
sponding to a low pass filter with cut-off frequency 1000Hz.
A distorted utterance containing the digit string “8379261”
is used for our training token.
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Figure 5: Total number of noise coefficients iterations of
scheme 1 and 2 for the first 100 rounds at SNR=10dB in
supervised mode

4.2. Experiments

In our experiments, we compare the performance of three
adaptation algorithms. The first one is a standard gradi-
ent ascent algorithm where both the bias and noise param-
eters are updated simultaneously using a fixed step size
(�(k) = 0:1 for all k). The remaining two use schemes
1 and 2 where the bias and noise parameters are optimized
separately, but in different order. A contractive variable step
size searching algorithm is used in the noise optimization
block to ensure that the auxiliary function increases at ev-
ery iteration. In all cases, the parameters are optimized in
supervised mode, where the word sequence is assumed to be
known. We choose as initial parameters~b = ~0 andpin = 10
for all i. Our previous experiments indicatepin = 10 is a
good guess for white noise at SNR=10dB.

For schemes 1 and 2, define one “round” to be one trip
through the blocks for updating the noise and bias coeffi-
cients. In this case, one round may correspond to many
noise parameter updates. After each round, recognition ac-
curacy is evaluated over the testing set.

4.3. Results

After separating the optimizations over~b and ~Pn, the num-
ber of bias coefficient iterations is negligible compared with
that of noise coefficients. The recognition accuracy of
schemes 1 and 2 and the corresponding total number of co-
efficient iterations are shown in Figure 4 and 5.

It is clear that the transformation can compensate for
the additive noise and constant channel distortion success-
fully. Figure 4 shows that the recognition accuracy reaches
89.11% after the 100-th round using Scheme 2. In compar-
ison, recognition accuracy of the baseline system (without
adaptation) is 8.9%.



Separating optimization of~b and ~Pn gives better per-
formance for the same computational effort. The standard
gradient ascent approach with fixed step size converges af-
ter 4012 iterations at an accuracy of 56.71%. By the 35th
round, Scheme 2 has performed a similar number of iter-
ations, but the accuracy reaches 77.64%. Even with half
the number of iterations, the accuracy still reaches 76.74%.
Most of the gains in the adaptation algorithm are observed
in the first several rounds.

The initial value plays an important role in the perfor-
mance of EM-based optimization process. The ordering of
the separate optimization blocks is very critical if only one
of initial guesses of~b and ~Pn is good. This point is illus-
trated by the performance difference between Scheme 1 and
2. After passing through the first noise parameter optimiza-
tion block in Scheme 1, the resulting transformation actu-
ally decreases performance due to the poor initial guess for
the bias vector. We have observed that over half the noise
parameters are dead-locked after the first round.

Even if we know the exact value of system bias, bet-
ter performance is observed if we optimize the bias and
noise coefficients as a whole. By fixing~b to be the simu-
lated constant channel distortion and optimizing overf~Png,
the system recognition accuracy reached 85.57%. However,
the maximum recognition accuracy obtained by scheme 2,
where both noise and bias coefficients are optimized, is
89.11%. Thus, the constant bias adaptation not only enables
the system to compensate for channel distortion, but also to
compensate for approximations made in deriving the noise
transformation.

5. CONCLUSION

We have presented a mixture mean transformation which
can compensate for additive noise and constant channel dis-
tortion via ML stochastic matching. For best performance,
several rounds of optimization should be done over the noise
and bias parameters separately. The ordering of noise and
bias optimization blocks is critical if only one of noise and
bias coefficients (~Pn and~b) has a good initial guess. Finally,
we found that the constant bias vector can compensate not
only for channel distortion, but also for approximations and
over-simplifications used in deriving the noise transforma-
tion.
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