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ABSTRACT

Given a signal space of functions on the real line, a
time-warped signal space consists of all signals that
can be formed by composition of signals in the original
space with an invertible real-valued function. Clark's
theorem shows that signals formed by warping ban-
dlimited signals admit formulae for reconstruction from
samples. This paper considers time warping of more
general signal spaces in which Kramer's generalized
sampling theorem applies and observes that such spaces
admit sampling and reconstruction formulae. This ob-
servation motivates the question of whether Kramer's
theorem applies directly to the warped space, which is
answered a�rmatively by introduction of a suitable re-
producing kernel Hilbert space structure. This result
generalizes one of Zeevi, who pointed out that Clark's
theorem is a consequence of Kramer's.

1. INTRODUCTION

Given a space S of signals f : R ! C and an invertible
function 
 : R ! R, the time-warped signal space S

consists of all functions of the form h = f � 
. In the
case that S is the space of B of 
-bandlimited signals
(i.e., functions of the form

f(t) =
1

2�

Z



�


f̂(!)ei!t d! (1)

with 0 < 
 <1 and f 2 L2(R)), a result of J.J. Clark
et al. [3] shows that the space B
 of time-warped ban-
dlimited signals admits the formula

h(t) =
X
n

h(�n) sinc

�

(
(t)� nT )

�

�

for reconstruction of h from samples h(�n) = h(
�1(nT )).
In this expression, T = �=
 is the so-called Nyquist

interval for B and sinc(t) = sin(�t)=�t. The sam-
pling times f�ng are generally nonuniformly spaced and

B
 contains signals that are not bandlimited [5], so
Clark's result provides a means for reconstructing cer-
tain spaces of non-bandlimited signals from nonuni-
formly spaced samples.

In [11], Y.Y. Zeevi and E. Shlomot noted that Clark's
theorem for time-warped bandlimited functions may be
seen as a special case of Kramer's well known general-
ized sampling theorem [8]. On the other hand, it has
been observed [4] that for any signal space S that ad-
mits a reconstruction formula of the form

f(t) =
X
n

f(tn)�n(t) (2)

there is a sampling theorem with reconstruction for-
mula

h(t) =
X
n

h(
�1(tn))�n(
(t)) (3)

for time-warped signals in S
 . Thus Clark's basic idea
applies to time-warped signal spaces in addition to B
 .

This paper considers time-warped signal spaces of
the form K
 where K is a \Kramer" space of sig-
nals for which Kramer's theorem yields a reconstruc-
tion formula of the form (2). When endowed with
the appropriate inner product, K
 is shown to admit
a reproducing kernel and thus become a reproducing
kernel Hilbert space (RKHS). The corresponding sam-
pling theorem is, however, identical to the one obtained
by applying Clark's method. Moreover, time-warped
Kramer spaces with the RKHS inner product are seen
to themselves be Kramer spaces and thus Clark's sam-
pling theorem in these spaces is subsumed by Kramer's
theorem, as in the case of time-warped bandlimited sig-
nals.

Unitary time warping of �nite-energy (L2) signals
has received recent attention in connection with sev-
eral signal processing applications [1, 2, 6]. This paper
closes with extensions of the results developed to uni-
tarily time-warped signal spaces.



2. CLASSICAL SAMPLING THEOREMS

The well known sampling theorem of Whittaker, Ko-
tel'nikov, and Shannon (WKS) establishes that a ban-
dlimited signal f of the form (1) can be reconstructed
from uniformly spaced samples by the WKS formula

f(t) =
X
n2Z

f(n) sinc

�

(t� nT )

�

�
(4)

where T = �=
 (as above) and the convergence is ab-
solute [7]. To set the stage for the results in the fol-
lowing sections of this paper, this section summarizes
Clark's and Kramer's extensions of this theorem. Since
no generality is sacri�ced, the remainder of the paper
will assume 
 = � to make T = 1 and simplify the
formulae presented.

2.1. Clark's theorem

If h = f � 
 (i.e., f(t) = f(
(t)) for all t 2 R) with f 2

B and 
 a warping function as described above, then
de�ning �n = 
�1(n) yields h(�n) = f(
(
�1(n))) =
f(n) so that the WKS formula (4) gives

f(t) =
X
n

h(�n) sinc[t� n]

and hence

h(t) = f(
(t)) =
X
n

h(�n) sinc[
(t)� n] (5)

With 
(t) = t, Clark's formula (5) reduces to (4)
with T = 1. Moreover, for 
 a non-a�ne function
(i.e., 
(t) is not of the form at + b with a and b real
numbers), the sampling times f�ng will generally be
non-uniformly spaced and the space B
 will contain
non-bandlimited signals. Thus Clark's theorem gener-
alizes the WKS theorem. Further analysis of the space
B
 is undertaken in [4] and [5].

2.2. Kramer's theorem

Kramer's generalized sampling theorem [8] considers
signals supported in a bounded interval I and supposes
the existence of a transform kernel  : R � I! C such
that  (t; �) 2 L2(I) for each real t. The Kramer space

K associated with I and  consists of all signals of the
form

f(t) =

Z
I

 (t; !) ~f(!) d!; (6)

with ~f 2 L2(I). If there exists a countable set ftng � R

such that f (tn; �)g is a complete orthogonal set on
L2(I), then K admits the reconstruction formula

f(t) = lim
N!1

X
jnj�N

f(tn)sn(t)

where

sn(t) =

R
I
 (t; !) (tn; !) d!R
I
j (tn; !)j2 d!

(7)

With I = [�
;
],  (t; !) = ei!t=2�, and tn =
n�=
, Kramer's theorem reduces to the WKS theorem.
Hence this result, like Clark's, generalizes the WKS
result.

3. RKHS STRUCTURE ON WARPED

KRAMER SPACES

Recall that a reproducing kernel (RK) on a Hilbert
space H of complex-valued functions on R is a func-
tion k : R2 ! C such that k(�; x) 2 H for each real x
and f(x) = hf; k(�; x)i for every x 2 R and f 2 H.

Let K be a Kramer space and let 
 be a warping
function. To show that K
 admits a RKHS structure,
note that (6) implies each f
 = f � 
 2 K
 has a rep-
resentation

f
(t) =

Z
I

 (
(t); !) ~f(!)d! (8)

De�ne an inner product h�; �i in K
 by

hf
 ; g
i =

Z
I

~f(!)~g(!) d! (9)

and k
(t; x) by

k
(t; x) =

Z
I

 (
(t); !) (
(x); !)d! (10)

Comparing (10) with (8) shows that k
(�; x) is the in-

tegral transform of  (
(x); �) and hence

hf
 ; k
(�; x)i =

Z
I

~f(!) (
(x); !)d! = f
(x) (11)

Thus k
 is a RK for K
 .

3.1. RKHS structure and sampling

Clark's observation shows that the warped Kramer space
K
 admits a reconstruction formula with sampling times
�n = 
�1(tn) and interpolation functions sn(
(t)) ob-
tained from the sn de�ned in (7). Using the RKHS
structure on K
 de�ned above allows this to be de-
duced both as a direct consequence of Kramer's theo-
rem (i.e., without reference to Clark's approach) and
as a corollary to a standard result about sampling for-
mulae in RKHS. With K = B, the �rst of these results
reduces to con�rm Zeevi and Shlomot's remark about
Clark's theorem following from Kramer's.



Let ftng be a sampling set forK and de�ne �(t; !) =
 (
(t); !). With f�ng as de�ned above, the facts that
f (tn; �)g is a complete orthogonal set in L2(I) and

f�(�n; !)g = f (tn; !)g

imply that f�(�n; �)g is a complete orthogonal set in
L2(I). Moreover, with this notation equation (8) shows
that

f
(t) =

Z
I

�(t; !) ~f
(!) d!

for each f
 2 K
 . Hence Kramer's theorem allows re-
construction of f
 from samples at ff
(�n)g by

f
(t) =
X
n

f
(�n)s


n(t)

with

s
n(t) =

R
I
 (
(t); !) (
(�n); !)d!R

I
j (
(�n); !)j2d!

(12)

=

R
I
 (
(t); !) (tn; !)d!R

I
j (tn; !)j2d!

= sn(
(t))

exactly as de�ned by Clark's observation.

The relationship between sampling and reproduc-
ing kernels is well established [9, 10]. In particular, a
sampling basis fvng of a RKHS yields a reconstruction
formula

f(t) =
X
n

f(tn)vn(t)

for a sampling set ftng if and only if its biorthogonal
basis fVng is given by

Vn(x) = hVn; vni k(tn; x) (13)

Recall that two sets fvng and fVng are biorthogonal
if hvn; Vmi = �nm hvn; Vni. Comparing (12) with (8)
shows that s
n(t) is the integral transform of

 (
(�n); !)R
I
j (
(�n); !)j2d!

and hence

hs
n; k
(tm; �)i = �nm

when the inner product is as de�ned in (9). Therefore
the biorthogonal basis of the sampling basis fs
ng arises
from the RK, (13) is satis�ed, and the sampling basis
fvng is identical to fs



ng.

4. SAMPLING IN UNITARILY WARPED

SPACES

As mentioned earlier, the role of unitary operators in
signal processing has received considerable attention in
recent years in connection with several applications.
If 
 is a di�erentiable warping function, the mapping
taking f 2 L2(R) to the signal h with values h(t) =p
j
0(t)jf(
(t)) is easily veri�ed to be a unitary opera-

tor on L2(R).
The machinery and results developed in the pre-

vious section of this paper extend readily to unitarily
warped Kramer spaces. In particular, the reproducing
kernel becomes

k
(t; x) =
p
j
0(x)
0(t)j

Z
I

 (
(t); !) (
(x); !)d!

and, assuming no 
0(tn) = 0, the sampling basis

vn(t) =

s���� 
0(t)
0(tn)

����sn(
(t))
and Parseval-like relationship

X
n

jh(tn)j
2p

j
0(tn)j
=

Z
jh(t)j2dt

are obtained.

5. CONCLUSION

This paper has shown that warped and unitarily warped
Kramer spaces admit RKHS structures, in view of which
three perspectives apply to yield sampling theorems
for such spaces. Clark's perspective was seen to be
subsumed by Kramer's theorem in this setting, as has
been pointed out by other authors in the special case
of time-warped bandlimited signals. Furthermore, the
introduction of a RKHS structure allows the use of
standard results on sampling in RKHS to obtain the
sampling theorems generated by Clark's and Kramer's
machinery in these time-warped spaces.
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