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ABSTRACT

This paper considers a class of detection/localization
problems in which the detector o�ers multiple operat-
ing modes. The modes di�er in their detection per-
formance and geographical coverage: \focused" modes
o�er higher detection performance but less coverage
area than \broad search" modes. It is assumed that
a signal source is to be detected and localized using a
sequence of tests, each possibly employing a di�erent
mode. The goal is to determine a strategy for mode se-
lection in the sequence of tests that will yield optimal
payo� in terms of a pre-established criterion. A mathe-
matical model capturing the key characteristics of this
situation is proposed and used to develop optimal mode
selection strategies.

1. INTRODUCTION

Recent advances in microprocessor and other technolo-
gies have greatly enhanced the capabilities and practi-
cality of tunable, deployable, and con�gurable sensors
in a wide variety of applications. Building upon pi-
oneering work that considered optimal measurement
map selection in estimating the state of certain classes
of stochastic dynamical systems [1, 2, 7], research ex-
plicitly addressing the development of strategies to ef-
fectively control the con�guration of a sensor system
in order to estimate parameters of the process being
measured has begun to emerge over the past few years
[4, 5, 9, 10].

This paper considers a situation in which a detec-

tor is con�gurable in such a way as to provide multiple
modes of operation that di�er in their detection per-
formance and geographical coverage. The development
that follows focuses on the case of a detector with two
operating modes: a \broad search" mode that provides
wide coverage and a \focused" mode that provides bet-
ter detection performance but covers less area. This is
indeed the case in the actual application that motivated
this research, in which an aircraft is to search for a
target using long-range and short-range radar systems
that cannot be operated simultaneously. At any given

moment, the pilot can test the entire area of interest
with the long-range radar with the expense of either
low probability of detection or many false alarms; al-
ternatively a small sub-region can be examined with
higher probability of detection and lower false alarm
rate, but limited time on station generally prevents the
entire region from being searched in this mode. The
ideas formulated in this paper generalize to detectors
having more than two modes in a straightforward way
{ provided, of course, that the modes are satisfactorily
modeled as described in the following sections.

2. MATHEMATICAL FORMULATION

A useful mathematical description of the situation in-
troduced in the previous section must account for dif-
ferences in the detector's operating modes, both in de-
tection performance and geographical coverage. In the
case of only two operating modes, as in the motivat-
ing application, an idealized model for the geographical
coverage is obtained by considering the entire region
of interest S to be partitioned into N disjoint \cells"
C1; :::; CN . Operating in the broad search mode (Mode

A), the detector tests for the presence of a signal source
in S. In the focused mode (Mode B), however, the test
may be applied to exactly one cell Cn.

To account for di�erence in detector performance
in the two operating modes, detector performance is
modeled as arising from the problem of detecting of
a known signal in white gaussian noise of known vari-
ance. This model provides a well understood solution
(i.e., the matched �lter) in each test, admits several
straightforward generalizations, and allows detection
performance in Mode B to be distinguished from that
in Mode A by simply raising the signal-to-noise ratio
(SNR). More speci�cally, in each mode of operation
the detector encounters a problem of the form

H0 : X = N (1)

H1 : X = S +N (2)

where S is a known signalM -vector with energy jjSjj2 =
1 and N is a zero-mean white gaussian M -vector hav-



ing known variance �2; i.e., N � N [0; �2I] where I is
the n�n identity matrix. Since jjSjj is �xed, the SNR
(and hence the performance of the detector) in each
mode can be adjusted by varying �2.

Assuming at most one signal source is present, de-
note by H1 and H0 the events that the signal source
is, respectively, present in and absent from S. For
n = 1; :::; N , denote by H1;n the event that the sig-
nal source is present in cell n and by H0;n the event
that the signal source is absent from cell n. With these
de�nitions, H1 = [Nn=1H1;n and H0 = \Nn=1H0;n. Re-
gardless of whether it is operating in Mode A or Mode

B, the system yields both a detection decision (!H0

or !H1) and a localization decision (!H1;i for some
i = 1; :::; N or !H0).

Recall that the optimal solution, in terms of mini-
mal probability of error, to a detector problem of the
form (1) is a test on the inner product STX where
the detection threshold is a function of the a priori

probability that a signal is present [6, 8]. The prob-
abilities of detection and false alarm for each test are
given by error functions of the detection thresholds. In
particular, the tests applied in both operating modes
will be of this form, but their detection thresholds and
probabilities of detection and false alarm will all be dif-
ferent (even when Mode B is applied to distinct cells)
because of their dependence on Pr(H1) and Pr(H1;n),
n = 1; :::; N .

Generally, the overall goal of the detection system
will be to both detect the signal source and localize
it (i.e., identify which cell it is in) { though these two
subgoals may not be of equal importance. This is mod-
eled by considering a payo� function consisting of the
convex sum of two terms

J = �U + �V �; � � 0; �+ � = 1 (3)

where U represents the probability that the correct de-
tection decision (i.e., between H0 and H1) is attained
and V represents the probability that the correct cell is
identi�ed. A precise mathematical formulation of these
two terms is given in the following section.

Beginning with prior probabilities Pr(H1;n) for n =
1; :::; N , the detection system is faced with the problem
of selecting a sequence of operating modes and cells
(whenever Mode B is selected) that will yield the best
value of the payo� function (3) after each test.1

1This may not be the same sequence that yields the best value

of the payo� function after a �xed number K of tests is com-

pleted, possibly a more realistic criterion in some applications.

3. AN ATTENTIVE DETECTION FILTER

To address the problem described above, the detec-
tion/localization system can perform an iterative se-
quence:

1. Determine whether to operate inMode A orMode

B and, if Mode B is chosen, which cell to test.

2. Perform the test and decide whether the signal
source is present and, if so, which cell it is in.

3. Update Pr(H1;n), n = 1; :::; N , for use in step 1
of the next test.

The following subsections describe these three steps in
detail. The natural order of development is to treat the
steps in reverse order.

3.1. Update of the priors

At the outset of this step a test has been performed,
either in Mode A on all of S or in Mode B on a speci�c
cell n. The a posteriori probabilities of H1 and H1;n

for n = 1; :::; N given the outcome of the test can be
evaluated by Bayes' rule. Denoting pi = Pr(Hi) and
pi;n = Pr(Hi;n), i = 0; 1, the posterior probabilities
are computed on a case-by-case basis in terms of the

detectors' probabilities of detection Pd;A, P
(n)
d;B and false

alarm Pf;A, P
(n)
f;B as follows.
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� Mode B on cell n, no detect:
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3.2. Test and decision

At this point, a mode has been selected and, in the
case of Mode B), a cell has also been selected. The rule
for making the selection will be developed in the next
subsection; the purpose of this subsection is to arrive
at a rule for generating a decision using the outcome
of the test selected. For notational convenience, the
decision will be represented here by an ordered pair
(d; `). The detection component d takes on the value
0 or 1 to re
ect the decision as to whether the signal
source is present in S. The localization component `
assumes values 1; :::; N denoting the cell in which the
source is located; ` = 0 is reserved for the special case
in which d = 0.

The decision criterion will be the a posteriori prob-
abilities given in the previous subsection. Speci�cally,
d will be assigned the value 1 if the posterior probabil-
ity of H1 following the measurement is larger than that
of H0 and assigned the value 0 otherwise. Similarly, `
is given the value 0 if Pr(H0) > Pr(H1); otherwise, `
takes the index of the most probable H1;n (in posterior
probability).

3.3. Mode selection

At the outset of Step 1, the mode selection step in the
algorithm, the system must select amongN+1 possible
tests T0; :::; TN providing 2N+2 possible outcomes on 2
f0; 1g, n = 0; :::; N . Each possible outcome requires
evaluation of N + 1 posterior probabilities in order to
determine the system decision (d; `).

As suggested in section 2, mode selection is based
on a payo� function J(Tn) formed as a convex sum of
two terms J(Tn) = �U(Tn)+�V (Tn). These terms are
de�ned explicitly in terms of a posteriori probabilities:

U(Tn) = Pr(H0jon = 0)Pr(on = 0) (4)

+Pr(H1jon = 1)Pr(on = 1)

V (Tn) = Pr(H1;`jon = 0)Pr(on = 0) (5)

+Pr(H1;`jon = 1)Pr(on = 1)

where ` in (5) assumes the index the cell chosen if
on is the conditioning value. In both of these expres-
sions, Pr(on = 0) = f(1� Pd;A)p1 + (1� Pf;A)p0g and
Pr(on = 1) = fPd;Ap1 + Pf;Ap0g for the Mode A test;

Pr(on = 0) = f(1 � P
(n)
d;B)p1;n + (1 � P

(n)
f;B)p0;ng and

Pr(on = 1) = fP
(n)
d;Bp1;n + P

(n)
f;Bp0;ng for the Mode B

tests. The other factors in (4) are the a posteriori prob-
abilities of H0 and H1 while those in (5) are the maxi-
mal posterior probabilities among fH0; H1;1; :::; H1;Ng
under each of the two test outcomes. In particular,
all of the numbers needed to evaluate J for each of the
N+1 candidate tests are available as a priori probabili-
ties, a posteriori probabilities, or detector performance
data. Evaluation of 2(N + 1)2 posterior probabilities
before mode selection to provide an exhaustive list of
the N + 1 possible post-test values of J is the crucial
step in mode selection. The test Tn is simply selected
to yield the maximum value of J(Tn).

3.4. Summary of the approach

To summarize, the system �rst uses the a priori prob-
abilities to compute probabilities of detection and false
alarm for the optimal Bayesian detectors for Mode A

and Mode B. Using these, a posteriori probabilities are
computed under each of the 2N + 2 possible test out-
comes. These are used to evaluate J for each of the can-
didate modes, and the one o�ering the maximal value
of J is selected. At this point, the selected test is ac-
tually run and the outcome is used to determine the
system output (d; `) and also to decide which set of
previously computed a posteriori probabilities will be
adopted as the a priori probabilities at the start of the
next iteration.

4. ATTENTIVE DETECTION EXAMPLE

Figure 1 shows the behavior of the two-mode detec-
tion/localization system operating in a �ve-cell (i.e.,
N = 5) scenario. The test signal and noise vectors are
of length M = 10 and the SNRs in the two modes are
established by the parameters �2A = 2 and �2B = 0:67.
The initial prior probabilities are Pr(H1;1) = :0839,
Pr(H1;2) = :1482, Pr(H1;3) = :0479, Pr(H1;4) = :1910,
Pr(H1;5) = :0289. The posterior probabilities of the
�rst test, which are used as the prior probabilities in
the second test, appear in the �rst column of the grid
{ and so forth. In this example, a signal source is actu-
ally present in cell 4. The system chooses Mode A for
the initial test (indicated by light shading of all cells in
the �rst column), does not detect (per the annotation
beneath the column), and decides for H0 (indicated by
the lack of a dark-shaded cell). Mode B on cell 4 is cho-
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Figure 1: An example illustrating the behavior of the
two-mode detector in a �ve-cell scenario. A detailed
description of this �gure is given in the text.

sen in the following three tests with detects in all three
tests. Following test 2, the system still decides in favor
of H0 (note the high initial prior of 0:5 on H0). After
tests 3 and 4, however, H1 is chosen and cell 4 is se-
lected (dark shading) because the posterior probability
of H1;4 is the largest of any cell.

5. DISCUSSION AND CONCLUSIONS

This paper has developed a Bayesian approach for op-
timal management of a switchable-mode detection sys-
tem. Although attention was focused on the two-mode
case, the principles employed should extend directly to
cases involving more modes.

The example in section 4 was terminated when pos-
terior probability of some cell (orH0) exceeded a thresh-
old, with correct decisions on both signal presence and
location. In other trials, the system occasionally did
not attain this termination condition in a reasonable
number of iterations, suggesting the need for conver-
gence analysis of the iterative algorithm and attention
to development of appropriate termination criteria.

As noted, one case of particular interest is where it
is known a priori that a �xed number of iterations will
be used. It would appear to be possible, in principle, to
evaluate the propagation of the hypothesis probabilities
exhaustively to the last iteration | considering every
possible combination of possible tests and outcomes |
before actually performing any of the tests. This would
allow selection of an optimal sensing strategy at the ex-
pense of a substantial computational burden. E�cient
algorithms for attaining near-optimal sensing strategies
in such cases would be of interest.

This work is part of the authors' ongoing research
into attentive sensing and biologically motivated ap-

proaches to sensor management.
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