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ABSTRACT

We present a solution to the problem of intensity image

segmentation using Bayesian estimation in a multiscale

set up. Our approach regards the number of regions, the

data partition and the parameter vectors that describe

the probability densities of the regions as unknowns. We

compute their MAP estimates jointly by maximizing their

joint posterior probability density given the data. Since

the estimation of the number of regions is also included

into the Bayesian formulation we have a fully automatic

or unsupervised method of segmenting images. An im-

portant aspect of our formulation is to consider the data

partition as a variable to be estimated.

We provide a descent algorithm that starts with an ar-

bitrary initial segmentation of the image when the num-

ber of regions is known and iteratively computes the MAP

estimates of the data partition and the associated param-

eter vectors of the probability densities. Our method can

incorporate any additional information about a region

while assigning its probability density. It can also utilize

any available training samples that arise from di�erent

regions.

1. INTRODUCTION

In image segmentation, the given image Y = fyi;j; i; j =
0; � � � ;M � 1g has to be partitioned into mutually ex-
clusive and totally inclusive subsets of Y namely r =
fr1; � � � ; rsg; rk � Y so that all the pixels belonging to a
subset rk are close to each other in some sense. We refer
to each subset as a region. Further, we want to parti-
tion the image into b segments such that the segments
are non-overlapping except for border pixels. In our ter-
minology, each region contains one or more segments.
The segments in a given region need not necessarily be
spatially contiguous. All the pixels corresponding to the
same region represent the same artifact like road, wa-
ter, house, etc and are described by the same probability
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density function. The choice of s, the number of regions
is itself a problem.

There exist several image segmentation techniques
based on stochastic models [1, 2, 3]. These methods
typically use Gaussian mixtures to model the regions
and Gibbs random �eld models to model the region la-
bels of the pixels. The associated model parameters are
then estimated in an approximate MAP setting or using
maximum likelihood(ML) estimation; with expectation
maximization(EM) algorithm. The disadvantage of us-
ing mixture models is that even when a Gaussian mix-
ture is used it is computationally expensive to compute
a single segmentation because of the non convex nature
of the cost function. Further there doesn't seem to ex-
ist a framework to systematically evaluate the obtained
segmentations.

In the Bayes approach given in this paper the par-
tition r is itself regarded as a variable to be chosen
from the appropriate space. When s is known, r =
fr1; � � � ; rsg; r 2 
s;s, the set of all partitions of set Y so
that none of the sets rk are null. When s is not speci�ed,
s � s0, then r = fr1; � � � ; rs0g; r 2 
s0 , the set of all par-
titions of Y into s0 subsets. The pixels in the same region
k are described by the probability density pk(yi;j j �k),
pk is a known function and �k is a vector parameter
whose values have to be determined, �k 2 Rnk. So,
the unknowns are fr = fr1; � � � ; rsg; � = f�1; � � � ; �sgg,
when s is known. Choosing pk(yi;j j �k) to be Gaussian
gives us a means of explicitly computing the estimates
of these unknowns.

The Bayes approach allows us to estimate s, the num-
ber of classes given that s � s0. Correspondingly the
best segmentation r has to be searched in the space
r 2 
s0 . It also solves the problem of comparing di�er-
ent segmentations. Two di�erent segmentations r and r0

involving di�erent values of s can be compared by com-
puting the ratio of the corresponding posterior probabili-
ties P (r j Y ) and P (r0 j Y ). Our method can also utilize
any additional information on the classes in assigning the
probability density function pk. For example, when all
the pixels yi;j are clustered tightly around a straight line



or a convex curve or a 2-D plane.

2. BAYESIAN ESTIMATION

Let the data set be Y = fyi;j ; i; j = 0; � � � ;M � 1g; yi;j
whose members are statistically independent. Let s be
the number of distinct classes in Y , s is known to us.
Let the s associated probability densities be pk(yi;j j
�k); �k 2 Rnk ; k = 1; � � � ; s: Let the set r = fr1; � � � ; rsg
be a partition of Y into s classes such that

rk � Y; 8k = 1; � � � ; s; ri \ rj = Null; i 6= jSs

k=1 rk = Y: rk 6= Null 8k = 1; � � � ; s:
(1)

Each rk is a subset of Y whose members are described
by the density pk. Let 
s;s be the set of all possible
distinct partitions of Y obeying (1). r and �k; k =
1; � � � ; s are the variables to be estimated. We regard
r 2 
s;s; �k 2 Rnk; k = 1; � � � ; s as independent random
variables. P (r), the prior probability associated with
r is same for all r; P (r) = 1

#
s;s
; 8r 2 
s;s. Let

� = f�1; � � � ; �sg. Let p(�k) be the prior probability
density of �k such that each component is uniformly dis-
tributed. Since the priors of � and r are uniform, the
MAP estimates (r�; ��) are given by

(r�; ��) = Arg max
r;�

P (Y j r; �): (2)

Since the data Y is independent, the joint density of Y
has the following form:

P (Y j r; �) =
sY

k=1

0
@ Y

yi;j2rk

pk(yi;j j �k):

1
A (3)

For a �xed s, to obtain the MAP estimates of r and �

we have to minimize the function

Js(r; �) = �2
sX

k=1

X
yi;j2rk

ln pk(yi;j j �k): (4)

For a �xed � the value of r which minimizes Js(r; �)
w.r.t r can be obtained using

r̂
�;k

= fyi;j : � ln pk(yi;j j �k) � � lnpu(zi j �u);

8k 6= u; u = 1; � � � ; sg; k = 1; � � � ; s (5)

Similarly for a �xed r, the minimizingvalue of � is unique
and it can be obtained using

�̂r;k = min
�k2R

nk

X
yi;j2rk

� ln pk(yi;j j �k); k = 1; � � � ; s: (6)

When pk are given by pk(yi;j j �k) � Gauss(�k; �k),

�k = f�k; �kg an explicit expression for �̂r;k can be given
because of the structure of � lnpk(�) as follows

�2 lnpk(yi;j j �k) = ((yi;j � �k)
2=�k) + ln2��k (7)

The parameter estimates with N1k = #rk are

�̂r;k =
1

N1k

X
yi;j2rk

yi;j

�̂r;k =
1

N1k

X
yi;j2rk

(yi;j � �̂r;k)
2 (8)

We use a simple descent algorithm for �nding a lo-
cal minimum of Js(r; �). It is done by changing � and
r alternatively using expressions (5) and (6), each time
having a reduction in J(r; �). Note that this method
yields a local minimumwhich need not be a global min-
imum, since we perturb only r or � at one time, not
simultaneously.
Descent Algorithm

1. Let rj = (rj1; � � � ; r
j
s) and �

j = (�j1; � � � ; �
j
s) be

estimates at the end of jth iteration. Choose
r
1 arbitrarily, perhaps from a solution of a

clustering algorithm with random seeds.

2. Given r
(j), compute �(j) using the formula in

(6).

3. Given �
(j), compute r(j+1) using (5).

4. Stop if r(j) = r
(j+1); otherwise goto 2.

End.
Note that the computational e�ort for �nding a local
minimumis very little. It involves only data comparisons
in (5) apart from evaluating the expressions in (8). Since
Js decreases with each iteration and is bounded below
by zero, the algorithm is assured to converge to a �xed
point. This �xed point is obtained when r

(j) = r
(j+1).

Moreover this convergence happens in a �nite number of
steps because the size of the set 
s;s is �nite.
Choice of s, the number of regions
The problem of choosing the value of s is also known
as model order identi�cation or cluster validation. In
our method we obtain the estimate of s via Bayesian
estimation by considering s also as a random variable.
The optimal Bayes estimator of (s; r; �) is given by

(s�; r�s� ; �
�) = Arg min

1�s�s0

�
min
r2
s;s

min
�k2R

nk

Hs

�
(9)

where

Hs = � ln

(
p(Y j s; r; �)P (r j s)

 
sY

k=1

p(�k j s)

!
P (s)

)

The prior probabilities of s and r given s are chosen as
follows:

P (s) = 1=s0; s = 1; � � � ; s0 (10)

P (r j s) =
1

#
s;s

;
X

r2
s;s

P (r j s) = 1 (11)



the prior probability of each component in �k is uniform
and equals 1=Lk. Since Lk is the prior density of �k, it
should cover the total range of all the components of �k.

3. MULTISCALE IMAGE SEGMENTATION

We assume that the yi;j are clustered around polynomials
speci�able through facet models.

yi;j = �0 + �1i + �2j + �3ij + �i;j (12)

�i;j � Gauss(0; �k) is the white noise with variance �k.
Then the density of yi;j belonging to the kth segment is
given by

pk(yi;j j �k) = Gauss (�0 + �1i + �2j + �3ij; �k) (13)

Note all the pixels belonging to region k have the same
variance but not the same mean owing to the dependence
on i and j. Let fk(yi;j; �k) = �2 lnpk(yi;j j �k). For a
�xed s, to obtain the MAP estimates of r and � we have
to minimize the function

Js(r; �) =
sX

k=1

X
yij2rk

fk(yi;j ; �k) (14)

Segmentation with multiple scales: Since the num-
ber of pixels N is large we have to carry out the partition
at several scales. In the beginning let us deal with blocks
of pixels say 4�4. Let the block be denoted by the lead-
ing pixel. For instance the block f(i + k; j + l); k; l =
0; 1; 2; 3g will be denoted by bi;j. We assign the entire
pixel block to one region rk in the partition. Note we
are not averaging the intensities in the block. Each pixel
retains its identity. Thus we have (N=16) = N1 blocks.
The region assignment of the block is given by

Assign all pixels 2 bi;j to rk if8<
:
X
i+u

X
j+v

fk(yi;j; �k) �
X
i+u

X
j+v

fu(yi;j ; �k) 8u

9=
; (15)

Partition at the coarse level: Since in the example
we deal with 80 � 80 image, N = 6400. We carry out
segmentation at 3 levels: 4�4, 2�2 and the �nest level.
Consider the coarsest level. Let

Y2 = fb2i;2j2 ; 0 � i; j � 39g (16)

Y4 = fb4i;4j4 ; 0 � i; j � 19g (17)

where bu;v
k

= fyu+i;v+j; 0 � i; j � k � 1g. Let the
corresponding partition be r4 = fr4;1; � � � ; r4;sg where
r4;s � Y4. All the pixels in the same block bu;v4 will
have the same region assignment, i.e they are assigned
the same density pk(� j �k).

For a given partition r4, �k is computed for the 1�1
pixel intensities yi;j in all the blocks bu;v4 assigned to r4;k
as indicated. For a given �k; k = 1; � � � ; s the partition is
updated as follows

Assign bu;v to r4;k if2
4 X
0�i;j�3

fk(yu+i;v+j ; �k) �
X

0�i;j�3

fl(yu+i;v+j ; �l); 8l

3
5

Thus we get the best partition r
�
4 = fr�4;1; � � � ; r

�
4;sg.

Partition at coarse level 2� 2: We divide the 4 � 4
blocks into 2 groups, the boundary or B blocks and non-
boundary or NB blocks. Each block has 4 immediate
neighbors: top, bottom, left, right. Two neighboring
blocks are labeled NB if their region labels are not dif-
ferent. The important idea here is the region assignments
made to the 1�1 pixels in the 4�4 NB blocks are �xed
and not altered in subsequent iterations. Only the as-
signments of pixels in B blocks are altered. All the 2�2
blocks derived from 4�4 NB retain the region type and
their region labels are not altered in iteration. At every
iteration every member of the block in the B type is as-
signed to r2;1; � � � ; r2;s as the case may be. Computation
of � and updating of r2 is similar to the earlier case of
4 � 4. After arriving at 1 � 1 level, the �nal result is
cleaned by averaging over a 5� 5 window.
Choice of s
The best value of s is that which minimizesHs. However,
in our multiscale scheme, it is more robust to decide on
the value of s at a coarser scale itself. So the value of s
is decided at the scale where all the pixels in blocks of
size 4� 4 have the same region assigned to them.
Example: (Synthetic Image)
We consider a synthetic image made up of three textures
from the Brodatz album. The reason for considering
a synthetic texture image is that the ground truth of
the underlying segmentation is available. The image is
80� 80 made of 5 segments and 3 regions. The original
image is in Figure 1(a).

The segmentation at level 4 � 4 involves N = 400
blocks. We begin with a random initial partition and
derive the associated local minimum. Several di�erent
local minima are derived. The best local minimum is
displayed in Figure 1(b) and the associated initial parti-
tion in Figure 1(c). For segmentation at level 2� 2 the
f�k; k = 1; � � � ; sg obtained from 4 � 4 level can serve
as the starting point. The �nal result is given in Figure
1(d). The result of segmentation at the lowest level is
displayed in Figure 1(e) and the cleaned image in Figure
1(f). The number of errors in the �nal segmentation at
the pixel level is 63 which corresponds to 1% misclassi-
�cation error. We note that the boundaries are visually
perfect.
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(a): Original image (b): Best local min., 4� 4 (c): initial partition
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(d): Best local min., 2� 2 (e): Best local min., 1� 1 (f): Cleaned image

Figure 1: Image segmentation on texture image, N = 6400, for s = 3. (b) Classi�cation at scale 4 � 4. (c) Initial
partition that gave (b). (d) Classi�cation at scale 2� 2 starting from (b). (e) Classi�cation at scale 1 � 1 starting
from (d). (f) Cleaned version of (e).

Choice of s
The values ofHs for s = 2; 3 and 4 are 63032:97; 61550:89
and 61707:41 respectively. The value of Hs is minimum
for s = 3 which is the actual number of distinct textures
present in the image.

4. CONCLUSION

We proposed a solution to the problem of image segmen-
tation based on Bayesian estimation. The new feature of
our method is, we regard the data partition as a variable
to be estimated. We developed a Bayesian framework
to estimate the number of classes, the class parameters
and the data partition simultaneously. We presented a
synthetic image example. Results on real images are also
quite encouraging [4].
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