SYNTHESIS OF ARRAY ARCHITECTURES FOR BLOCK MATCHING MOTION ESTIMATION:
DESIGN EXPLORATION USING THE TOOL DG2VHDL

John Bonk

Andrew Stone

FElias S. Manolakos

Communications and Digital signal Processing (CDSP)
Center for Research and Graduate Studies
Electrical and Computer Engineering Department
Northeastern University, Boston, MA 02115

ABSTRACT

In this paper we present a design case study using DG2VHDL,
a tool which bridges the gap between an abstract graphical
description of a DSP algorithm and its concrete hardware
description language (HDL) representation. DG2VHDL au-
tomatically translates a Dependence Graph (DG) [1] into a
synthesizable, behavioral VHDL entity that can be input
to industrial strength behavioral compilers for producing
silicon implementations of the algorithm (FPGAs, ASICs).
Full Search Block Matching Motion Estimation was selected
for its current applications (MPEG, HDTV, Video Confer-
encing) as well as for the richness of literature and archi-
tectural exploration over the last decade. We will not only
demonstrate here that the behavioral VHDL code produced
automatically by the tool leads, after behavioral synthesis,
to an efficient distributed memory and control modular ar-
ray architecture, but will also provide comparative statistics
for several new FS-BMA architectures derived for real-time
motion estimation.

1. INTRODUCTION

Block Matching Algorithms (BMA) for Motion Estimation
are used in many applications in Digital Image Processing.
These algorithms are used to encode video frames in order
to reduce the amount of video data that needs to be stored
or transmitted. The assumption in this type of encoding is
that with moving objects, small groups of pels move in the
same direction. Motion Vectors are determined by starting
with the first frame of a video sequence, and then compar-
ing blocks of pels of this frame with the next frame. Each
block of pels in the next (reference) frame is compared with
displaced blocks in the previous (search) frame. This is re-
peated for all blocks contained in the reference frame. The
displacement vectors for the blocks are stored or transmit-
ted instead of the pel data. An example Reference Block
and Search space are depicted in Figure 1. The shaded
region in the Search space corresponds to a displacement
vector of (0,0).

The Full Search BMA is the simplest search algorithm,
but is also the most computationally intensive BMA. How-
ever, the FS-BMA is a very regular algorithm. The 4-D
algorithm from [2] is :

i [(00)[(01)](©2) * (0.0)|(0.1)[(02)[(0.3) | (04

(10| (1D| (12 L)LY (12| (13|14

202122 20(2D((22)](23)|(24)| 2p+1

- Z

(m,n)=(0,0) | (3,0)|(31)[(3,2)|(3,3)| (3.4

~4— N —»

X(i.K) (4,0)|(41)|(42)|(43)| (4,9

y(i+m,k+n)

- —

2p+l

Figure 1: Reference Block and Search Space for N = 3,p =
1.

N—-1N-1

stmon) =Y |e(i, k) —y(i+mk+n)| (1)

1=0 k=0

0>m,n>2p, u=minm,s(m,n)], v=_(m,n)l. (2)

where z is the reference frame, y is the search frame, N is
the number of pels in each column and row of the reference
block, p is the maximum displacement vector of an N X
N block in each direction within the search frame, u is the
minimum displacement metric, and v is the corresponding
displacement vector.

Because of the very regular recursive nature of the FS-
BMA/ the inherent parallelism of the algorithm can be ex-
ploited using arrays of processors operating in parallel. In
[2], 1-D and 2-D arrays of parallel processors were system-
atically derived from a 3 -dimensional Dependence Graph
(DQ). In this paper, we describe three new extensions to the
work done in [2] and describe how the exploration and im-
plementation of these designs was greatly facilitated using

the DG2VHDL tool.

2. OVERVIEW OF THE DG2VHDL TOOL

DG2VHDL is a tool that tries to facilitate behavioral syn-
thesis by concentrating in the high end of the design flow
and in areas where the industrial behavioral compilation

DG description (text file) VHDL Libraries
node/edge definition, for DG Nodes
mapping operators 1
! DG2VHDL 1
[H 2
VHDL Compile DG Representation
Package| Constraints & Script Behavioral VHDL Code 3
" Behaviora !
1 Compiler
i “
ArealTiming RTL Code Database Representation
Reports for Simulation for Synthesis 5
Further Synthesis
Figure 2: Rapid Prototyping of DSP Algorithms using

DG2VHDL.

tools are currently weak, such as: (i) the decomposition of a
synthesis problem into smaller ones which can be processed
independently; (ii) the explicit expression in the automat-
ically produced behavioral VHDL descriptions of all the
available parallelism in the algorithm, so that it gets fully
exploited by the behavioral compilation tools, and (iii) the
rapid prototyping of high throughput, fully pipelined, easy
to modify and resynthesize, modular parallel structures,
with distributed memory and control, which can achieve the
high throughput rates demanded by real-time signal /image
processing applications.

The design process with DG2VHDL can be segmented
into several distinct stages, as shown in Figure 2. During
phase one, the designer first creates a textual description,
or netlist, that describes the nodes and edges of the DG.
Every distinct node type should be associated with a be-
havioral VHDL function in a library. Then the space and
time mapping operators should be specified, which will be
used to translate the DG into a Signal Flow Graph. The
selected mapping may be one that is known to be optimal
in some sense (area, efficiency, latency, IO requirements,
etc.) or perhaps one the designer merely wishes to explore.
The only restriction is that it should be permissible i.e. it
does not violate the precedence and space-time compatibil-
ity constraints [1]. Mappings that may cause collisions are
detected and are not allowed. Finally, the designer should
define the bit width of the architecture to be synthesized.

During the second phase of the design process DG2VHDL
applies the mapping operators to the input file and gener-
ates its own internal representation of the resulting Signal
Flow Graph as well as several output files which are repre-
sentative of the SFG. These include: (i) a VHDL behavioral
entity/architecture pair which mirrors the behavior of the

SFG and its IO characteristics. (i) a VHDL package includ-

ing a declaration of the needed data types and constants,
and (iii) third party specific scripts which can be used to
drive the hardware synthesis of the SFG using an industrial
tool .

Upon arriving at phase three, the designer is in posses-
sion of several behavioral VHDL files. Simulation should
be used to verify their correctness before proceeding with
behavioral synthesis. After behavioral synthesis, area and
timing reports can be reviewed, and simulation again per-
formed using the produced RTL level VHDL code. If satis-
factory, then one may continue onward with gate-level syn-
thesis, targeting a specific silicon implementation (ranging
from FPGAs to full custom VLSI devices). At this point
the design is simulated again and, assuming an FPGA im-
plementation, it is exported to a particular manufacturer’s
tool for automated or manual fitting, or perhaps sent to a
layout house if a custom layout has been opted for. Apart
from hardware testing, the design process is then complete.

For additional information on DG2VHDL, with case
study, the interested reader is directed to [4].

3. ALGORITHM DERIVATION

A recursive algorithm for FS-BMA was used to derive a 3-
dimensional Dependence Graph (DG) in [2] and is shown
in Figure 3. In this 3-D DG (i, k, m), the reference frame
#(1,k) is input into the (7, k,0) plane of the DG. The ref-
erence data propagates between DG nodes in the [0 0 1]
direction. Search frame data, y(: + m, k + n) is input into
the (0, k,m) and (i, %k, 2p + 1) planes and propagates in the
[10 — 1] direction. There are three different node types in
this DG. The AD nodes compute the Absolute Difference
of the two inputs, and adds this value with the difference
computed by the node above it. The A nodes add the two
inputs together and output the sum. The M nodes output
the smaller of the two input values.

This DG (Figure 3) illustrates the comparison of the ref-
erence block with 2p 4+ 1 candidate blocks from the search
space. For the m = 0 plane, the reference block is compared
with the m = 0 displacement search block. The difference
between the elements of the first column of each block (re-
fer to Fig. 1) is computed along the k direction by the AD
nodes in the (0, k,0) direction. The second column differ-
ence is computed on the (1, %,0) linear array of M nodes,
etc. The column differences are accumulated along the ¢ di-
rection by the A nodes. The last A node output represents
the displacement metric for (0, n). This value is then input
to the m = 0 M node which performs the minimum met-
ric comparison and passes the minimum metric on to the
next M node. The remaining i, k& planes perform similar
computations.

In order to map this 3-D DG into a linear Signal Flow
Graph (SFG) which is 100% pipelineable, the DG has to
be split into three parts (AD nodes, A nodes, M nodes),
with each part space mapped independently as described
in [5]. This results in a set of three linear arrays. Each
array is derived from one set of nodes (AD,A,M). This is
similar to architecture AS1 from [5] and [2] with the excep-
tion that for this mapping, an z value and y value are input

1Currently we target the Synopsys Behavioral Compiler (BC)
[3], but other tools are being taken into consideration

2p+1=17

N=16

b a
S
min ——=
arg.min| C
Figure 3: Pirsch 3D DG.
A k’m
! N| i=0 tile 10 Pattern Identical to Tile2
(A (B)
2= yo) v y(2p)

i=1 tile X i i i
l i i

i=N-1 tile O —» PEloH PEl{ (11} pEAr;m
e {380 i

Figure 4: Design Tile 1: (A) DG (B) SFG and IO Patterns.

on each clock cycle, and there are 2p+1 y values input per
clock cycle. The disadvantage of this architecture is that
it has 3 x (2p 4 1) processing elements, and that the linear
arrays derived from the AD and A nodes both contain an
accumulator. The AD array accumulates the column sum
(s edge), and the A array accumulates the sum of the N
column sums. The M node array propagates the minimum
displacement metric (edge m shown in Fig. 3) along with
the arg.min value which is equal to the m plane that pro-
duced the minimum result. In order to avoid the duplica-
tion of accumulators, we propose a slice and tile variation of
the 3-D DG, similar to that used in [6], except that instead
of tiling in two directions (vertically and horizontally), the
DG is tiled or stacked in only the vertical direction.

Figure 4 (A) illustrates the tiled DG. The tiles are taken
from the k, m planes of the original 3D DG from [2], with
each plane placed beneath the previous one. The last AD
node now produces the final accumulation comparison met-
ric for the entire N x N block, instead of just for one column
as in the original DG, thus no A nodes are needed. By map-
ping the DG onto the ¢, m plane, two linear arrays are gen-
erated as shown in Fig. 4 (B). This solution again provides
the ability to input z and y values on each clock cycle, and
has removed the additional accumulation hardware, delay
buffers, and the associated control logic.

A second variation of the tiled DG is generated by mod-

F’m ? S=[0 1] T=[11]
k
N| i=0 tile
X
PEO-X = PE1l eee |PE2p %
~2pti- (raster scan
i=1 tile TV@) Tyﬂ) Twzm
0,0 _
1,0 1,0 — (B)
M 2,0 2,0 —
O A . ° °
@) : : (YY) :
15,0 15,0 —
. . 0,1 16,0 16,0
i=N-1 tile 11 11 170
,,,,,,,,,,,, last row, AD and H H H
M nodes combined . . .

Figure 5: Design Tile 2: (A) DG (B) SFG and IO Patterns.

Note, there will - -
) ikm be a lapse of input every S=[001] T=111]
I Nl i=0 tile N*N clock cycles
X
PEOL X ~|PE1| eee |PE2p 5%
(raster scan
~2p+1l—>=
i=1 tile TY(O) [)’(l) [y(2p)
0,0 —
10 1,0 - (B
: 2,0 2,0 —
o o [
* (A) : : o000 :
o1 160 160
i=N-1 tile 11 11 17,0
[d [d [d
[d [d [d
L] L] L]

} 1 Row M Nodes,

Figure 6: Design Tile 3: (A) DG (B) SFG and IO Patterns.

ifying the Nth AD node to include the M function. Thus
the absolute difference, accumulate, and minimum selec-
tion functions are all performed by the same node within
one clock cycle. This eliminates the extra control needed
to synchronize the M function. This DG is shown in Figure
5(A) with the resulting mapping shown in Figure 5(B).

The third variation uses the same DG developed in Fig-
ure 4(A) (also shown in Figure 6) and uses a different space
mapping. A space mapping of .S = [0 0 1] was used to pro-
duce a linear array of (2p + 1) PEs. The resulting SFG is
shown in Figure 4(B).

4. SYNTHESIS RESULTS AND
COMPARISONS

Each of these three designs was compiled by DG2VHDL and
then scheduled and compiled by Synopsys BC Compiler in
less than one hour. The target ASIC library used was LSI
10K. Area results are highly dependent on the target library
used. Other ASIC libraries may be used which produce
outputs with smaller clock periods and less area. Also, an
FPGA vendor’s library can be used to synthesize designs
for FPGA implementation.

Synthesis results and architecture features for the three
designs are shown in Table 1. In order to make the results
meaningful, the block size was chosen to be 16x16, with
the maximum search displacement of +/- 8 (N = 16, p =
8). Also, for x and y inputs of 8 bits, accumulators with 16
bits were used ensuring no overflow errors occur.

|| Design | Tilel | Tile2 | Tile3 |

Clock Cycle (ns) 36.22 46.07 36.18
Area (gates) 29,026 | 22,103 | 25,101
Latency 273 272 273
(clock cycles)
Efficiency 0.502 1.000 1.000
Number of PEs 34 17 17
Block Pipeline Period 256 256 257
1/O (pins) 170 170 170

Table 1: Comparative Summary of Designs.

Design Tile 1 has the smallest clock period while main-
taining a Block Pipeline Period () equal to the problem
size (N?). The disadvantage is that Tile 1 contains twice as
many PEs (2 (2p+1)) as the other two designs, which re-
duces the overall efficiency of the design and requires extra
control hardware which accounts for the higher gate count
compared with the other two designs.

Design Tile 2 achieves the smallest total area of the
three designs consisting of 17 ((2p + 1)) PEs. Tile 2 also
has a 8 of N? and achieves an overall efficiency of 100%.
This means that each PE performs a computation on every
clock cycle. The maximum operating frequency of the Tile
2 design is the slowest (221 MHz). This is due to the longer
execution time needed for the composite AD/M nodes.

Design Tile 3 provides the fastest operating frequency,
and contains (2p + 1) PEs. It also achieves 100% efficiency,
however the Block Pipeline Period is now N2 + 1. Thus
data can not be input on every clock cycle. There will be
one clock cycle out of every N? clock cycles when data can
not be input to the array.

The I/O for each design is 170 pins. This may be re-
duced by broadcasting common y input data to multiple
PEs and providing an alternate y input port to input data
to the PEs which do not receive the common data as was
done in [7]. Tt should be noted that in our implementations
the search area is —8 < m,n < 8 compared with the a
search space of only —8 < m,n < 7 to in [7]. This results
in extra PE(s) in our arrays.

The Tile 1 and Tile 2 designs were synthesized using
the Altera Flex 10k FPGA library. Tile 1 and Tile 2 syn-
thesis resulted in projected utilizations of 6873 and 5423
LUTs respectively. Due to limitations in our toolset, the
largest device available to us was the EPF10K100 100K
gate equivalent FPGA. Both design fit into a two FPGA
set (one EPF10K100 device plus one EPF10K50 device).
Both of these designs would easily fit in the EPF10K250
device.

Finally, to demonstrate the adherence to the SFG model
of the VHDL models targeted by DG2VHDL, we have in-
cluded a (top level) schematic (Fig. 7).

5. CONCLUSIONS
In this paper we have presented three architectures for Full

Search Block Motion Estimation, each providing the de-
signer with the typical tradeoffs of latency and area, but all

Figure 7: Top level schematic for Design Tile 1 post Syn-
opsys synthesis.

providing high throughput solutions. These designs were
greatly facilitated by the use of DG2VHDL, which provided
accurate and rapidly synthesizable VHDIL models charac-
teristics of the SFGs shown in Figures 4, 5, and 6. Syn-
thesis from DG2VHDL input file to gate level netlist being
performed in less than hour.

Acknowledgments: The authors would like to thank Syn-
opsys for making their EDA tools available through the Uni-
versity program, and Prof. M. Leeser for permission to use
resources in the Rapid Prototyping Lab at Northeastern U.

6. REFERENCES

[1] S. Y. Kung.
1988.

[2] T. Komarek and P. Pirsch. Array architectures for
block matching algorithms. IEEE Transactions on Cir-
cuits and Systems, 36:1301-1308, October 1989.

[3] Synopsys. Synopsys Online Documentation Collection.

[4] A. Stone and E.S. Manolakos. Using DG2VHDL to
synthesize an FPGA implementation of the 1-D Dis-
crete Wavelet Transform. In Proceedings of the IEEE
Workshop on Signal Processing Systems (SiPS), 1998.

[5] P. Pirsch and T. Komaranek. VLSI architectures for
block matching algorithms. In SPIE volume 1001, pp.
882-891, 1988.

[6] S. Chang, J.H. Hwang, and C.W. Jen Scalable Array
Architecture Design for Full Search Block Matching
IEEE Transactions on Circuits and Systems for Video
Technology, 5:332-343, 1995.

[7] C. Sanz, L. de Zubeta, and J. Meneses. FPGA Tmple-
mentation of the Block-Matching Algorithm for Mo-
tion Estimation in Image Coding. 6th Int’l. Workshop
on Field-Programmable Logic and Applications, pp.
146155, Sept. 1996.

VLSI Array Processors. Prentice Hall,

