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ABSTRACT

The average probability of error is used to demonstrate per-
formance of a Bayesian classification test (referred to as the
Combined BayesTest (CBT)) given the training data of each
class are mislabeled. The CBT combines the information
in discrete training and test data to infer symbol probabil-
ities, where a uniform Dirichlet prior (i.e., a noninforma-
tive prior of complete ignorance) is assumed for all classes.
Using this prior it is shown how classification performance
degrades when mislabeling exists in the training data, and
this occurs with a severity that depends on the value of the
mislabeling probabilities. However, an increase in the mis-
labeling probabilities are also shown to cause an increase in
M� (i.e., the best quantization fineness). Further, even when
the actual mislabeling probabilities are known by the CBT,
it is not possible to achieve the classification performance
obtainable without mislabeling.

1. INTRODUCTION

In this paper, performance of a Bayesian classification test
(referred to as theCombined BayesTest (CBT)) is illus-
trated given the training data of each class are mislabeled.
The CBT combines the information in discrete training and
test data to infer symbol probabilities which are assumed
to have, for each class, a prior uniform Dirichlet distribu-
tion (i.e., a noninformative prior representing complete ig-
norance).

Here, the term “discrete” means that data used to repre-
sent each class can take on one ofM possible values. This
data may have arisen naturally in itsM -level form, or it may
have been derived by quantizing feature vectors. Also, for
each class, there are certain labeled realizations of this (M -
valued) data, and this is referred to as “training” data. That
is, there areNk realizations under classk andNl realiza-
tions under classl.
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Now, with the situation of interest, the training data of
each class are assumed to be made up of two parts. That
is, a correctly labeled part and a mislabeled part. Specifi-
cally, theNk (Nl) training data of classk (l) consist ofNkk

(Nll) correctly labeled observations occurring with proba-
bility 1��k (1��l), and a remainingNkl (Nlk) mislabeled
observations occurring with probability�k (�l). With this,
it is assumed thatN~y unlabeled “test” data are observed,
which are to be tested by a classifier. Therefore, the prob-
lem addressed here is to illustrate, using a formula for the
average probability of error (P (e)), the effect that misla-
beled training data has on classifying unknown test data.

In previous work, performance of the CBT was exam-
ined theoretically usingP (e), and correctly labeled training
data. In particular,P (e) was investigated as a function of
the number of discrete symbols used,M (i.e., the quantiza-
tion fineness). A minimum point ofP (e) was found given
a fixed amount of training data and test data [7]; that is, a
quantization fineness referred to asM�, which is related to
theHughes phenomenon[3] of pattern recognition [4]. Fur-
ther, in addition to this work, performance of the CBT has
been compared to other classification tests, [6, 9], and it has
been successfully applied to data reduction [8].

2. CLASSIFICATION WITH MISLABELED
TRAINING DATA

2.1. Combined Multinomial Model

It is assumed that there exists a pair of probability vectors,
~pk and ~pl, the ith elements of which denote the probabil-
ity of a symbol of typei being observed under the respec-
tive classesk andl. The fundamental model for this testing
method is thus formulated based on the number of occur-
rences of each discrete symbol being an i.i.d. multinomially
distributed random variable. Therefore, the joint distribu-
tion for the frequency of occurrence of all training and test
data with the test data,~y, a member of classk is given by
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where1

k, l 2 ftarget, nontargetg, andk 6= l;
Hk is the hypothesis defined as~p~y = ~pk;
M is the number of discrete symbols;
xkk;i is the number of occurrences of theith symbol in the
correctly labeled training data for classk;

Nkk

n
Nkk =

PM
i=1 xkk;i

o
is the total number of occur-

rences of theM symbols in the correctly labeled training
data for classk;
xkl;i is the number of occurrences of theith symbol in the
mislabeled training data for classk, and which belong to
classl;
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is the total number of occurrences

of theM symbols in the mislabeled training data for class
k;
xk;i = xkk;i+ xkl;i is the number of occurrences of theith

symbol in all training data for classk;
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of occurrences of theM symbols in all training data for
classk;
yi is the number of occurrences of theith symbol in the test
data;
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theM symbols in the test data;
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is the probability of theith symbol

conditioned on the test data being an element of classk.

2.2. Combined Bayes Test

Rather than assuming that~pk and~pl are simply unknown
parameters to be estimated (and use a combined general-
ized likelihood ratio test [6]), our approach here is to give
them prior distributions. Nothing a priori is known about
the probability vectors, and hence the appropriate prior is
one of complete ignorance; the uniform Dirichlet.2

1In the following notationk andl are exchangeable.
2The uniform Dirichlet results when the parameters of this distribution

are set to unity [1]. Note, it has been suggested in [5] that a better prior to
use, given unknown true statistics, is the Dirichlet with its parameters set
to one half (also see, [2]).

The first step in developing the CBT for mislabeled train-
ing data is to apply the Dirichlet,

f (~pk) = (M � 1)!�
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to the formula of (1) undereach classk and l, and then
integrate, respectively, over thepositive unit-hyperplanere-
sulting in
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Continuing, formula (3) is now expressed in terms of the
complete training data vectors,~xk and~xl. This is accom-
plished by appropriately substituting the definitions~xk =
~xkk + ~xkl and~xl = ~xll + ~xlk into formula (3), followed by
summing over all arrangements of mislabeled training data,
yielding

f (~xk; ~xl; ~yjHk;�k; �l) =
~xkX

~xkl=~0

~xlX
~xlk=~0

f (~xk � ~xkl; ~xlk; ~xl � ~xlk; ~xkl; ~yjHk;�k; �l)

(4)

Using this result, the CBT is then given by the ratio of
(4) to its analogous formula under classl (i.e., conditioned
onHl), and it appears as

f (~xk; ~xl; ~yjHk;�k; �l)

f (~xk; ~xl; ~yjHl;�k; �l)

Hk
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where, for minimizing the probability of error, the decision
threshold� is equal toP (Hl) =P (Hk).

2.3. Probability of Error

Lettingzk = f (~xk; ~xl; ~yjHk;�k; �l) (see formulas (4) and
(5) above), the average probability of error for the CBT is
defined as



P (e) = P (Hk)P (zk � �zl j Hk)

+P (Hl)P (zk > �zl j Hl) (6)

It is necessary to show the first term of (6) only as the
second term is similar except for conditioning onHl. Thus,
ignoringP (Hk), the first term of (6) is given by

P (zk � �zl j Hk) =X

~y

X

~xk

X
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wheref (~xk; ~xl; ~yjHk;�k; �l) was defined in formula (4)
above, andI(x) is the indicator function.

3. RESULTS

Fig. 1. CBT performance with�k = �l = 0:05.
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Figure 1 above shows the average probability of error
for the CBT when the true mislabeling probabilitiesare given
by, �k = �l = 0:05. Also, for comparing performance,
P (e) is shown given there is no mislabeling in the training
data. Notice thatP (e) is plotted as a function ofM , and
there are ten samples of training data for each class and one
test observation. Additionally, in this and subsequent fig-
ures the threshold� = 1, meaning thatP (Hk) andP (Hl)
are both 0.5.

Observe in Figure 1 that in both casesP (e) starts out
decreasing with increasingM and is minimum at a point
we callM�, and in this caseM� = 4. With this, also notice
that forM greater thanM� P (e) steadily increases. This
dependence ofP (e) onM reflects the fact that given a fixed
amount of training and test data, a prior quantizing fineness

exists which yields, on average, the “best” classification per-
formance .3 But, it can also be seen in Figure 1 that when
mislabeling exists, performance begins to degrade in that
P (e) increases (although not by much for these small mis-
labeling probabilities; see Figures 2 and 3 below). However,
it was also found that when the training data of both classes
are mislabeled with the probabilities shown above, perfor-
mance is identical for the CBT given it contains (equal for
both classes) any mislabeling probabilities specified by the
range,0 � �k = �l < 0:5. Thus, in this situation, and as it
turns out in all cases presented here, the mislabeling proba-
bilities assumed by the test are irrelevant as long as they are
not 0.5 or higher.

Fig. 2. CBT performance with�k = �l = 0:25.
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In Figure 2P (e) is shown for the CBT when the true
mislabeling probabilities are�k = �l = 0:25. With this, as
in Figure 1P (e) is shown when there is no mislabeling in
the training data, and again there are ten samples of training
data for each class and one test observation.

Notice in this figure, as compared to Figure 1,P (e) has
increased given these larger mislabeling probabilities. But,
more importantly,M� has increased from 4 to 5. In other
words, best classification performance occurs for situations
which a priori require more discrete symbols. Further, and
as mentioned above, this performance remains consistent
when the CBT contains any mislabeling probabilities (equal
for both classes) less than 0.5.

Figure 3, on the next page, showsP (e) for the CBT
when the true mislabeling probabilitiesare�k = �l = 0:45.
Also, P (e) is shown for the no mislabeling case, and the
training and test data configurations are the same as in Fig-
ures 1 and 2. ObserveP (e) has increased even further with
these mislabeling probabilities, andM� is now equal to 6.

3This was previously pointed out in [4], and also see, [10].



This, and the results shown in the previous two figures indi-
cate thatM� tends to increase with the mislabeling proba-
bilities. However, this is only true for mislabeling probabil-
ities less than 0.5. That is, performance of those cases with
mislabeling probabilities greater than 0.5 mirrors the per-
formance of those cases with mislabeling probabilities less
than 0.5. In other words, performance with the mislabeling
probabilities equal to 0.25 is essentially the same as when
the mislabeling probabilities are equal to 0.75.

Fig. 3. CBT performance with�k = �l = 0:45.
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4. SUMMARY

In this paper, the effect that mislabeled training data has on
classification performance was demonstrated given there is
no knowledge of the underlying discrete symbol probabili-
ties, nor of the mislabeling probabilities. In general, it was
shown that both the probability of error and the optimum
quantization fineness,M�, increase with the mislabeling
probabilities.

Also, and not shown here, previous results obtained for
the CBT with no mislabeling [6, 7] imply thatP (e) can
be reduced in all cases shown above if the number of test
observations is increased (i.e.,N~y > 1). With future work,
this issue is to be explored further.
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