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ABSTRACT

A new generalized statistical signal processing frame-
work is introduced for optimal signal representation
and compression. Previous work is extended by con-
sidering the multiple signal case, where a desired sig-
nal is observed only in the presence of other non-white
signals. The solution to this multi-signal representa-
tion problem yields a generalization of the Karhunen-
Léeve transform and generates a basis selection which
is optimal for multiple signals and colored-noise ran-
dom processes under the minimum mean-square error
criterion. The important applications for which this
model is valid include detection, prediction, estimation,
compression, classification and recognition.

1. INTRODUCTION

This paper is concerned with the representation of dis-
crete time, wide-sense stationary (WSS) signals in the
many applications of statistical detection and estima-
tion theory. For the purposes of this work, the ef-
ficiency of a signal representation is evaluated based
upon its compaction of the useful signal energy as a
function of rank. This criterion is equivalent to opti-
mal signal compression.

The multiple-signal problem is considered herein,
where a signal of interest is only observed in the pres-
ence of at least one other non-white process. Signal
processing for multiple signals, under the conditions
described above, is described within the general frame-
work of the discrete-time, finite impulse response (FIR)
Wiener filter. The Wiener filter is a fundamental com-
ponent in the solution to virtually every problem which
is concerned with optimality for linear filtering, detec-
tion, estimation, classification, smoothing and predic-
tion in the framework of statistical signal processing
with stationary random processes.
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The differences between the single and multiple sig-
nal representation problems are emphasized in this pa-
per. The fundamental issue in signal representation
and compression is the determination of an optimal
coordinate system. It is well-known that the eigen-
vectors associated with the covariance matrix of an
N-dimensional WSS signal provide the basis-set for
the Karhunen-Loeve expansion of that signal. The
minimax theorem establishes that this set of eigenvec-
tors represent the particular basis for an /N-dimensional
space that is most efficient in the energy sense for this
single process. Optimal representation and compres-
sion as a function of rank (or dimension) is then ob-
tained by retention of the principal components [3].

However, there are very few problems where the sole
criterion of interest is single-signal representation. This
fact is readily verified by considering the popular prob-
lems of detection, estimation, prediction, classification,
noise-cancellation, spectral estimation. Here, for the
problem to be non-trivial, there are a minimum of two
non-white signal processes: the signal of interest and a
colored-noise process. If one now speaks of signal rep-
resentation or compression of one process, the solution
must take both processes into account in order to deter-
mine an optimal basis. In fact, it has been previously
established [1]-[2] that the principal-components are
no longer the correct enumeration of the eigenvectors
for optimal representation. Consequently, the standard
Karhunen-Loeve decomposition no longer provides the
solution to optimal basis selection, and a new basis
set must be derived which takes into account the pres-
ence of the other signals; a generalized Karhunen-Léeve
transformation.

2. MULTIPLE SIGNAL MODELING AND
WIENER FILTERING

In a more general setting, the classical problems of
statistical signal processing are concerned with joint
signal representation and compression. These prob-
lems are characterized by a Wiener filter, depicted in



Fig. 1, where there are two processes present. The
N-dimensional process xg is now considered to be the
sum of potentially many processes, while dy is a scalar
process which is correlated with xg.

The process dg, normally termed a desired process,
is representative of a signal of interest in some way, and
the goal is to estimate dy from xg. For example, in the
radar and sonar detection problem the “desired” signal
is usually the output of a beamformer or matched-field
processor, and the observed data vector xg is every-
thing orthogonal to this signal in the data received at
a sensor array. In the communications application of
multiuser detection and demodulation, the process dj
may be generated by a known correlation with the sig-
nal of interest such as the code of a user in a CDMA
wireless network. As a final example, in classification
for automatic target recognition the desired signal may
be a template image from training data, while the ob-
served data is an image received by the fielded sensor.
In general, the mechanism which generates the refer-
ence signal is application specific; however nearly every
problem in statistical signal processing may be repre-
sented using this model.

The process dy is a scalar process with variance 030
and xg is an observed N-dimensional signal, which it-
self may be a composite random process, with covari-
ance R,,. The filter to be defined, w, processes the
observed-data to form an estimate of the desired signal
do = wxg. The error process g,

0 = do — wixg, (1)

is the signal which characterizes the performance of
the filter, and the optimal Wiener filter minimizes the
mean-square value of this error signal. The mean-
square value of the error is calculated to be,
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where the N-vector rp,q, is the cross-correlation be-
tween the processes dp and xg.

The minimum mean-square error (MMSE) optimiza-
tion criterion is formally stated as follows:
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The well-known solution to (3) is the Wiener filter,
which is computed as follows:

W = Rc;[)lrmodo . (4)

3. OPTIMAL SIGNAL REPRESENTATION
FOR STATISTICAL SIGNAL PROCESSING

In this section, an optimal rank-ordered and general-
ized signal represenation is developed based on a mul-

tistage Wiener filter decomposition [1]-[2]. The nat-
ural optimization criteria at each stage is the mini-
mization of the mean-squared error (MSE). Consider
the multistage Wiener filter depicted in Fig. 2. Signal
compression is achieved by successive rank-one selec-
tions which are chosen to minimize the MSE at each
stage, or, equivalently, “whiten” the error residue (in-
novation). For example, the first rank-one subspace
(h; € CV) is obtained by choosing the vector in the
space spanned by the columns of the covariance ma-
trix R, € CN*N which is maximally correlated with
the desired process dy. The optimal choice is thus
hy, = ry4,/lITeods||- This selection results in an er-
ror residue ey = dy — w{ldl, where d; = h{lxo, and
wy € C is the optimal Wiener weight for the selected
signal d;. Note that, in general, hy will not correspond
to the eigenvector with largest associated eigenvalue,
as would be the case in a KLT representation. Con-
sequently, a principal components based reduced rank
Wiener filter will, in general, produce suboptimal com-
pression [1].

Since the subspace which can contribute to reduc-
ing the MSE is likely greater than rank one, additional
stages will be required to achieve a desired level of
MSE. Thus at the i-th stage, a new rank-one sub-
space (h; € CVN**1) is selected which is maximally
correlated with the entire optimal Wiener residue ¢;
from the previous stages. Thus, referring to Fig. 2,
h; =1, /||tse ], where ry,., € CV=# 1 is the cross-
correlation between x; and ;. However, a simplifi-
cation results which eliminates the need to explicitly
calculate the optimal Wiener weight vector in order
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to form h;, specifically, rq,., = Y @jre,q, = Q7¢,q,,
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from which the following simplification results, h; =
rm'i.di,/”rm'i.di ||

It is important to note that the above decomposi-
tion leads to a tridiagonalization of the joint process
covariance matrix [2]. This is in contrast to the stan-
dard KLT or principal components based decomposi-
tions which impose a unitary constraint, resulting in di-
agonalization (but with a generally greater MSE). We
thus refer to the above multistage Wiener-based signal
represenation as a generalized KLT (GKLT).

4. A COMPARATIVE EXAMPLE

Interestingly, major insight into the relative behavior
and performance of the various approaches to reduced-
rank signal modeling can be gained with relatively sim-
ple examples. For instance,consider an example in 32,
where there is a 2-dimensional observed-data vector xg



with covariance matrix Ry,
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and a desired signal dp with a variance oy = 10. The
two processes, dg and xg, are assumed to be zero-
mean, jointly stationary, and correlated. The cross-
correlation between the two processes is given by the
vector ry q,,
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The KLT provides the eigendecomposition of the
matrix Rg,:
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which demonstrates that one eigenvalue is significantly
greater than the other. The KLT takes into account
the self-directional preference of the signal and provides
the most efficient representation of the autocorrelation
energy in the signal.

The question at hand, however, is the determina-
tion of the best basis representation for xy in terms
of estimating dp. The KLT basis is still thought of as
being optimal for detection and estimation by many
researchers. To explore whether the KLT and the prin-
cipal components are still the best basis choice, con-
sider preprocessing the observed process xg with a filter
composed of the eigenvectors of R,,. The new process
zo = VFxg, has a diagonal covariance matrix given by
A. Also, the cross-correlation between zg and dy is now
given by, Tzodo — VHrmodO'

The MMSE performance of the eigenvector-basis as
a function of rank is now evaluated. The full-rank
solution is identical regardless of basis representation
since the performance measure is invariant to invert-
ible transformations of the observed signal xgq.

However the results are different in the rank-1 case,
where one of the two eigenvectors which compose V is
discarded. The principal-components algorithm states
that the eigenvector corresponding with the largest eigen-
value should be retained. Here, the largest eigenvalue
magnitude corresponds with the second eigenvector,
and the MMSE for this case is given by,

§PC = ”30 - rfodovz)‘glvgrwodo' (7)
The MMSE performance, converted to decibels, for the
full-rank Wiener filter is 0.3951 dB and that for the
rank-1 principal-components Wiener filter is 8.0811 dB.

Thus, there is a loss of 7.6860 dB in reducing the rank
from 2 to 1. Note that the MMSE which results if the
smaller eigenvector is retained is 6.6901 dB. Here the
MMSE loss is approximately 1.4 dB less than that ex-
perienced by the principal-components selection; that
is, a performance enhancement is obtained by select-
ing a different eigenvector than that indicated by the
principal-components. This observation led to the de-
velopment of the cross-spectral metric (CSM) based
KLT PC rank reduction method [1]. In the CSM-KLT
approach, eigenvectors are ordered based on both en-
ergy and the amount of cross-correlation with the de-
sired process. The CSM-KLT would have selected the
smaller eigenvector in this example.

If, however, the rank one subspace is selected based
on the GKLT approach (Section 3), the resulting MSE
is 3.9127 dB, an improvement of nearly 3 dB over the
CSM-KLT approach, and slightly over 4 dB compared
to principal components. Fig. 3 shows the relative
performace of the three approaches as the cross corre-
lation vector ry,q, is rotated through 360°. Note that
the GKLT uniformly outperforms the principal compo-
nents (PC) method except in those rare instances when
rzod, and vy are colinear. Also note that there is ad-
ditional coincidence with the CSM when r; 4, and vo
are colinear.

5. CONCLUSION

A new generalized statistical signal processing frame-
work was introduced for optimal signal representation
and compression for the multiple signal case. The so-
lution to this multi-signal representation problem was
shown to yield a generalization of the KLT (GKLT)
which generates a basis selection which is optimal for
multiple signals and colored-noise under the MMSE cri-
terion.
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Fig. 2 Multistage Wiener filter structure.
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Fig. 3 Relative MMSE performance of the various rank-reduction methods.



