
PROFER: PREDICTIVE, ROBUST FINITE-STATE PARSING FOR SPOKEN LANGUAGE

Edward C. Kaiser, Michael Johnston and Peter A. Heeman

Center for Spoken Language Understanding
Oregon Graduate Institute

PO Box 91000 Portland OR 97291
kaiser@cse.ogi.edu

ABSTRACT

The natural languageprocessingcomponentof a speechunderstand-
ing system is commonly a robust, semantic parser, implemented
as either a chart-based transition network, or as a generalized left-
right (GLR) parser. In contrast, we are developing a robust, se-
mantic parser that is a single, predictive finite-state machine. Our
approach is motivated by our belief that such a finite-state parser
can ultimately provide an efficient vehicle for tightly integrating
higher-level linguistic knowledge into speech recognition. We re-
port on our development of this parser, with an example of its use,
and a description of how it compares to both finite-state predictors
and chart-based semantic parsers, while combining the elements of
both.

1. INTRODUCTION

Parsing spontaneous speech is difficult. Users often say things that
are not covered in the system’s lexicon and grammar. Their speech
may also contain noise, on-line verbal corrections, or other extra-
grammaticalities. The recognizer itself may make errors in decod-
ing the speech. In the face of all this variability, typical rule-based
parsers are too brittle. Because of this brittleness, rule-based gram-
mars are generally not used for language modeling in speech recog-
nition. Statistical n-gram language models, instead, have become
the standard. They are more forgiving and therefore robust; but,
they cannotcapture the long-range dependenciesrepresented in higher-
level grammar definitions.

It is possible to build robust, rule-based parsers. The JANUS
system for multi-lingual spontaneous speech translation has used
various approaches to robust parsing [8]. At the transcription level
a skipping version of Tomita’s (GLR) parser has been used that in-
cludes probabilities on individual reduce actions (in the manner of
Briscoe and Carroll [2]). And at the semantic level the PHOENIX
system has been used for robust “concept-spotting” [12].

PHOENIX works by filling slots within a case-frame. The pat-
terns which map to individual slots can occur in the input any num-
ber of times in any order. Out-of-grammar words that occur be-
tween slots can be skipped. Thus, partial parses (i.e., frames in
which only some of the available slots have been filled) can be re-
turned. This “concept-spotting” approach allows for considerable
robustness in the face of spontaneous spoken input, and its usage
is common in spoken language information systems [11].

Our system, PROFER (pronounced “proffer”) — which stands
for Predictive RObust Finite-state parsER, is designed to be func-
tionally equivalent to PHOENIX in terms of robust parsing. Fig-
ure 1 offers a simple example of robust “concept spotting.” Us-

ing the CSLU toolkit’s Rapid Application Developer (RAD) [7] we
have built a small prototype system that extracts canonical repre-
sentations of movie titles and times-of-day. This example uses a
very simplistic language model in which every possible word is
equally likely at every state in the grammar.

Figure 1: Robust parsing example.

In Figure 1 the User Query includes both online verbal cor-
rections, and out-of-grammar vocabulary. The Recognizer Tran-
script of that User Query is rife with mis-recognitions, insertions
and deletions — due to our overly-simplistic languagemodel. Given
all of this variability, PROFER still robustly extracts the intended
meaning, as both a Case-frame Hierarchy and as a simple Canon-
ical Transcript

Both GLR parsers and chart-basedparsers, like PHOENIX, can
also be used to provide prediction sets for limiting the acoustic search
space of a speech recognizer. However, the computational expense
of using such parsers for language modeling can overload the de-
coder. For example, Murveit and Moore [5] abandoned the forma-
tion of prediction sets in their dynamic network generation system
because its was too time-consuming. One way to reduce the com-
putational expense of using these parsers as predictors is to trans-
form them into finite-state acceptors (FSAs), as has been described
by Pereira and Wright [6].

The goal of our research in developing PROFER is to combine
the tractability, speed and predictiveness of finite-state approaches
to language modeling, like Pereira and Wright’s FSAs, with the ro-



bustnessand “concept-spotting”capabilities of a system like PHOE-
NIX. In other words, we are creating a finite-state parser capable
both of producing sequential prediction sets, and also of incremen-
tally building a robust, case-frame representation of concepts ex-
tracted from the input.

In Section 2 we will describe Pereira and Wright’s method for
approximating CFGs as FSAs. It involves some of the same pre-
liminary steps taken by a GLR parser, and so will be instructive.
Then we will take a high-level look at the PHOENIX system (Sec-
tion 3). Next we will show how PROFER combines the elements
of both approaches (Section 4), and conclude with some discussion
of our future work (Section 5).

2. PREDICTIVE FINITE-STATE ACCEPTORS

Pereira and Wright use the following steps in their method:

� Translate the definingfeature-constrained, phrase-structure
grammar into a CFG (not shown).

� From the CFG create the LR(0) characteristic machine (Fig-
ure 2), using standard LR techniques [1].

Figure 2: LR(0) machine creation.

� Flatten the LR(0) characteristic machine into a preliminary
finite-state acceptor (PFSA) (Figure 3). That is, from the
item-sets, shift-transitions, and logical reduction paths in the
LR(0) machine, create the states and arcs of the PFSA.

Figure 3: The FSA approximation process.

� To reduce the occurrence of over-generation in the PFSA
(exemplified by the heavy-lined path in the Flattening step
of Figure 3), unfold its states into new states that are sets of
stack-prefixes arriving at the same location in the PFSA.

� Determine the group of new FSA states by collapsing the
stack-prefixes into equivalence sets (see the Unfold & De-
terminze step of Figure 3).

� Simplify the resulting FSA into the final approximation by
removing any non-terminal arcs, and removing any null-arcs
along with the states they lead into (see the Simplify step of
Figure 3).

The resulting FSA can be used for the purpose of sequentially
producing prediction sets; that is, FSAs can provide a higher-level,
grammatical languagemodel for speechrecognition, and havebeen
used for that purpose in various limited task domains [6].

Pereira and Wright point out that it has been shown that no pos-
sible algorithm exists for converting all CFGs that describe regular
languages into FSAs [6]. This is not a problem for their method,
because some over-generation in the prediction sets is acceptable.
However, for the purposesof robustly generating case-frame parse-
trees, as PROFER does, inexact finite-state representations of the
grammar could allow the parser to spuriously find concepts that did
not exist in the input.

Figure 4: PROFER’s grammar definition formalism.

The case-frame grammar definitions accepted by both PHOE-
NIX and PROFER are notational means for expressing regular lan-
guages, with the restriction that no rewrite pattern can be empty.
So, an exact FS translation of any case-frame definition is always
possible (see [3]). Figure 4 illustrates the basic elements of PRO-
FER’s (and PHOENIX’s) grammar notation.



3. PHOENIX: A ROBUST SEMANTIC PARSER

Figure 5 illustrates the basic outline of the PHOENIX system. PHOE-
NIX goes immediately from a grammar definition written in its own
case-frame style, as illustrated in Figure 4, to individual transition
networks (TNs) as shown in step 1 of Figure 5.

There is no intervening translation into the LR(0) characteristic
machine, as in Pereira and Wright’s algorithm. As each TN is con-
structed its non-terminals are re-written, based on the rewrite pat-
terns in its definition file (see Figure 4). At the end of this process
all non-terminals arcs are removed from each TN’s representation
(see step 2 in Figure 5).

During run-time (see step 3 in Figure 5), when an arc traversed
by a TN is encountered the chart is searched for a previous occur-
rence of that TN in that position. If no previous occurrence is found
then that TN is descendedinto recursively and processing is contin-
ued at the lower level When an arc leading to the final state of that
TN has been traversed, the position of the completed TN is charted,
and the parse returns to the previous level of recursion (see the gray
arrow in step 3 of Figure 5).

Each chart entry extends a branch within the overall parse-tree.
When all possible chart entries have been made, the resulting paths
are scored heuristically. The path or paths which account for the
largest number of input words in the fewest number of nets, slots
and frames receive the highest score.

Figure 5: PHOENIX system outline.

4. PROFER: COMBINING PREDICTION AND ROBUST
PARSING

PROFER translates from its grammar definition files (cf. Figure 4)
immediately into a series of finite-state machines (FSMs), just as
PHOENIX does, with no intervening translation into the LR(0) ma-
chine (see 1 & 2 in Figure 5). Figure 6 illustrates the next step of
PROFER’s compilation, which does not occur in the PHOENIX
system. We refer to this step as “contextualization,” and it is very
similar (in terms of outcome) to the steps of FSA construction il-
lustrated in Figure 3.

PHOENIX uses the identifying numbers associated with each
separate FSM during run-time to label each edge as it is added to a
path in the chart. In a GLR parser these net identifiers would be en-
coded in the stack state at each position of the parse. In PROFER,
as in Pereira and Wright’s FSAs, they become part of the names
of the finite-state machine’s individual states (as illustrated in Fig-
ure 6). Thus, state names in PROFER hold much in common with
the equivalent stack prefix configurations that would occur in a par-
allel GLR parse.

Figure 6: Contextualization in PROFER.

In PROFER, origins (Figure 6) are a superset of the states in
the final FSM. Each origin contains two substructure trees. The
first facilitates efficient compilation. It holds the full hierarchy of
prefixes,arcs and terminals, and is illustrated in Figure 6. Concep-
tually this first substructure is similar to an item-set (cf. Figure 2) in
the characteristic machine of a Left-Right parser [1]. The second
facilitates run-time parsing and the formation of prediction sets. It
holds top-level groupings of all the left-corner terminals associated
with each origin. The terminals in each grouping are cross-indexed
into their respective positions within the first substructure.

Figure 7: Building the case-frame parse tree.

Parsing begins by extendingevery left-corner contextual-group



that occurs in the first origin (see Figure 7). It then proceeds as
an alternation between hash-table lookups, and the “unioning” to-
gether of contextual-groups from all possible next states into a new
prediction set.

Parse-tree information is carried forward through a system of
linked tokens that preserve the sequence of prefixes. This is shown
both in context on the Prefix Path line of Figure 7, and then sepa-
rately in Figure 8, which is a print-out of the last two token nodes of
the finished path represented in Figure 7. The last token in Figure 8
illustrates the major fields included in each token node structure.
The fields in gray boxes correspond to those on the Prefix Path line
in Figure 7. Overall the fields in the token node structure provide
the information needed to construct the finished Case-frame repre-
sention shown in Figure 7.

Figure 8: Finished path token nodes.

The token paths within the overall parse-tree are shared in a
manner that is conceptually similar to the graph-structured stack
(GSS) mechanism of a GLR parser [10]. A chart-based or GLR
parser must walk each extension during run-time to collect the set
of possible next terms. In our construction that collection work is
done during compilation, leaving only the “unioning” operation to
be done at run-time.

Various researchers [9, 4] have written extensively on modifi-
cations to Tomita’s GLR algorithm for better managing of the “an-
cestor” information, which is equivalent to the stack history infor-
mation that Pereira and Wright describe as being “crucial” to the
workings of their algorithm [6]. In PROFER’s design we have set-
tled on a method that uses complete hierarchical locations to name
each origin, prefix and arc, thus efficiently encoding their stack his-
tories. Moreover, these encodedname strings also function as hash-
table keys, providing fast table lookups for indexing during run-
time.

5. CONCLUSION AND FUTURE WORK

We have outlined our method for constructing a predictive, robust
finite-state parser, and contrasted it with both FSAs and the PHOE-
NIX system, a robust chart-based semantic parser. We have also
demonstrated the use of this parserwithin a small prototype system,
built within the CSLU toolkit’s RAD environment.

Although our work on PROFER is still in its early stages, we
have shown that such an approach is viable, both as a stand-alone
semantic parser, and as a stand-alone finite-state predictor. In the

future we hope to show that such an approachwill also be viable for
tightly integrating higher-level linguistic constraints into the speech
recognition process.

6. ACKNOWLEDGMENTS

The first author was funded by the Intel Research Council, the NSF,
and the CSLU member consortium. We also wish to thank Ron
Cole, Jim Larsen, and Wayne Ward for valuable discussions and
support.

7. REFERENCES

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1988.

[2] Ted Briscoe and John Carroll. Generalized probabilistic lr
parsing of natural language (corpora) with unification-based
grammars. Computational Linguistics, 19(1):25–59, 1993.

[3] John E. Hopcroft and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley, 1979.

[4] J. R. Kipps. GLR Parsing in Time O(n3). In Masaru Tomita,
editor, Generalized LR Parsing, pages 43–59. Kluwer Aca-
demic Publishers., 1991.

[5] Hy Murveit and Robert Moore. Integrating natural language
constraints into hmm-based speech recognition. In IEEE In-
ternational Confreenceon Acoustics, Speech and Signal Pro-
cessing, Vol. 1, pages 573–576, Albuquerque, April 1990.

[6] Fernando C. N. Pereira and Rebecca N. Wright. Finite-state
approximations of phrase-structure grammars. In Emmanuel
Rocheand Yves Schabes, editors, Finite-State LanguagePro-
cessing, pages 149–173. The MIT Press, 1997.

[7] J. Schalkwyk, L. D. Colton, and M. Fanty. The cslu-sh toolkit
for automatic speech recognition: Technical report no. cslu-
011-96, August 1996.

[8] B. Suhm, L. Levin, N. Coccaro, J. Carbonell, K. Horiguchi,
R. Isotani, A. Lavie, L. Mayfield, C. P. Rose, Van Ess-
Dykema C., and A. Waibel. Speech-language integration in
a multi-lingual speech translation system. In Paul McKevitt,
editor, Proceedingsof the AAAI-94 Workshop on the Integra-
tion of Natural Language and Speech Processing, pages 92–
99, Seattle,Washington, 1994.

[9] H. Tanaka, Hiu Li, and T. Tokunaga. Incorporation of
phoneme-context-dependence into lr table through constraint
propagation method. Journal of Japanese Society for Artifi-
cial Intelligence, 11(2):246–54, March 1996.

[10] Masaru Tomita. Efficient Parsing for Natural Language:
A Fast Algorithm for Practical Systems. Boston, Mas-
sachusetts: Kluwer Academic Publishers, 1986.

[11] Gertjan Van Noord, Gosse Bouma, Rob Koeling, and Mark-
Jan Nederhof. Robust grammatical analysis for spoken di-
alogue sytsems. Natural Language Engineering, 4(1):1–48,
1998.

[12] W. Ward and S. Young. Flexible use of semantic constraints
in speech recognition. In Proceedings of ICASSP ’93. IEEE
International Conference on Acoustics, Speech, and Signal
Processing,Minneapolis, MN, USA, IEEE; New York, NY,
USA, 1993.


