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ABSTRACT

This paper presents a linear programming approach
to discriminative training. We �rst de�ne a measure of
discrimination of an arbitrary conditional probability
model on a set of labeled training data. We consider
maximizing discrimination on a parametric family of
exponential models that arises naturally in the maxi-
mum entropy framework. We show that this optimiza-
tion problem is globally convex in Rn, and is moreover
piece-wise linear on Rn. We propose a solution that in-
volves solving a series of linear programming problems.
We provide a characterization of global optimizers. We
compare this framework with those of minimum classi-
�cation error and maximum entropy.

1. INTRODUCTION

Consider conditional probability distributions P (f jh)
where h is history and f is future. Our goal is to predict
the future using the model P , given the history. In a
classi�cation problem, history is the observation vector
and future is the label of a class. As in a classi�cation
problem, consider the case when there is only a �nite
set of futures F , �xed a priori.

Let the model's best guess of future be

argmax
f2F

P (f jh):

In the classi�cation problem, this is the Bayes decision
rule or the maximum a posteriori (MAP) decision rule,
and leads to minimum error rate classi�cation when
used with the true a posteriori probability distribution
on the underlying variables. However, true distribution
is not available to us and can only be estimated from
a set of labeled training samples.

Suppose we are given a collection of training pairs
(hi; fi); i = 1; : : : ; T . Treating training data as truth,
we ideally want a model P such that for each i,

P (fijhi) = max
f2F

P (f jhi):
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This will rarely be the case for a model. We want to
assign a measure of goodness to the model that penal-
izes wrong guesses; the penalty shall be proportional
to how far away the guess is from truth in terms of
probabilities.

2. OBJECTIVE IS DISCRIMINATION

We consider two measures of discrimination of the
model P . One measure is de�ned by

D1(P ) :=
TX

i=1

log
P (fijhi)

maxf2F P (f jhi)
: (1)

The second is de�ned by

D2(P ) :=
TX

i=1

log
P (fijhi)

maxf2F�ffig P (f jhi)
: (2)

Clearly,

D2(P ) � D1(P ) �
TX

i=1

logP (fijhi) =: L(P )

where L(P ) is the likelihood of the training data ac-
cording to the model P . Also, D1(P ) � 0 for any
model P .

The motivation behind these de�nitions is as fol-
lows. We want the model to select the correct future
for any history. This failing, we want the correct future
not to be outguessed by a big margin. That is, we want
the correct future to be as close to the model's best
guess as possible, when they are not identical. This is
what D1 attempts to capture. The second measure D2

attempts to enforce that correct future clearly stands
above all other competing hypotheses even when it is
the model's best guess, and that correct future comes
close to the best guess when they are not identical.
That is, D2 encourages the model to discriminate all
competing hypotheses against the correct hypothesis.
All this is in relation to all of training data, on aver-
age.

This is related to `1-version of minimum classi�-
cation error discriminant described in [1]. In deed, if
F = f1; 2; � � � ;Mg, and if we de�ne gi(h) := logP (ijh),



then the misclassi�cation measure in Equation (13)
of [1] is identical to the summand in (2) above,
modulo the sign of the objective function. For fur-
ther identi�cation of the approaches, we observe that
`k(dk) := dk leads to �D2 and `k(dk) := max(0; dk)
leads to �D1. However, in [1], the conditional prob-
abilities themselves are not used in discriminant func-
tions. In [2], class conditional likelihood functions are
used as discriminant functions; however, where they
use P (hjf), we use logP (f jh). It is important to note
that we de�ne our objective function directly in terms
of a posteriori probabilities. We believe that using a
posteriori probabilities directly is better [3].

The theory described here applies equally well to
both measures of discrimination. So, we focus only on
D1 for the sake of notational simplicity, referring to it
as the discrimination. We even drop the subscript and
write D1 as D from now on.

The de�nition of discrimination is applicable to any
arbitrary conditional probability distribution. Given
a class of models, the goal then would be to choose
the model that maximizes discrimination. We con-
sider maximizing discrimination on a class of models
that is well-founded in the maximum entropy (mini-
mumKullback-Leibler distance) framework. This class
is a parametric family of exponential models described
below. On this class of models, the discrimination turns
out to be globally convex in the parameter (in Rn).

3. THE MODEL CLASS

The exponential family of models has three compo-
nents: a prior distribution, a set of features, and
weights associated with these features. The prior distri-
bution models any prior knowledge we may have about
the underlying problem. When there is no prior knowl-
edge, the prior distribution is uniform. Typically, the
features are binary questions on history and future.
Formal description of the family now follows.

We start with a given conditional distribution
P0(f jh), called the prior distribution. We are also given
a vector function �(h; f) whose components are real-
valued. We call � the feature function.

We consider a family P of exponential models pa-
rametrized by � 2 Rn as below:

P�;�(f jh) =
P0(f jh)e��(h;f)

Z�;�(h)
;

with the normalization factor Z�;� given by

Z�;�(h) :=
X

f

P0(f jh)e
��(h;f):

Recall that P arises in the dual formulation of the
minimum Kullback-Leibler \distance" problem (maxi-
mum entropy problem if the prior is uniform) and that

optimal solution to the primal problem is the maxi-
mum likelihood solution in the dual formulation. In
other words, one chooses � to maximize the likelihood
of training data according to the model P�;�. In this
paper, we start with the dual formulation and replace
likelihood of training data with discrimination as the
objective function. Also recall that discrimination is
an upper bound to likelihood. Finally, even though we
sometimes say that P is \centered on" P0, the prior P0
is not a distinguished member of the family; P can be
reparametrized around any other member. We use this
reparametrization argument later in a proof.

4. MAIN RESULTS

We now look at the discrimination of these models. We
write P�;� as P� or even as P when convenient. We
abuse the notation and write D(P�;�) as D(�), since
with � and P0 �xed D is a function of only �.

For any model P , we are interested in the best guess
of future. However, it is possible that two di�erent f 's
can achieve the maximum. A selector is the process
that assigns for each h an f̂P (h) that maximizes P (�jh).
A model can have several selectors associated with it.
We denote a particular selector's best guess by

^fP (h) := argmax
f2F

P (f jh):

Simplifying the notation, we will write f̂P�;� as f̂�.

For a �xed hi, f̂� can be considered a function of �. In
spite of f̂� being discontinuous, it turns out that D is a
convex function of �. We will also develop an iterative
algorithm to �nd the maximizer of D that involves two
steps in each iteration: selection and maximization. In
the selection step, we choose a selector for the current
model. In the maximization step, we maximize the
objective function over all � that do not change the
selector. The maximization is done by solving a linear
programming problem.

Notation.

 i(�) := logP0(f̂�(hi)jhi)e
��(hi;f̂�(hi))

c :=
X

i

logP0(fijhi)

d :=
X

i

�(hi; fi)

d̂(�) :=
X

i

�(hi; f̂�(hi))

The notation for d̂ hopefully suggests that the de�ning
sum is a function of the selector as well.

Notice that

f̂�(hi) = argmax
f

P0(f jhi)e��(hi;f)

Z�;�(hi)



= argmax
f

P0(f jhi)e
��(hi;f)

which implies that

P0(f̂�(hi)jhi)e
��(hi;f̂�(hi)) = max

f
P0(f jhi)e

��(hi;f):

With this notation, we have

D(�) = c+ �d�
X

i

 i(�)

= c�
X

i

logP0(f̂�(hi)jhi) + �[d� d̂(�)]

= D(0) + �[d� d̂(�)] +
X

i

log
P0(f̂0(hi)jhi)

P0(f̂�(hi)jhi)

from which follows a useful lower bound for D(�).

Lemma 1. D(�) � D(0) + �[d� d̂(�)]

Proof. Follows from P0(f̂0(hi)jhi) � P0(f̂�(hi)jhi): 2

Proposition 1. D(�) is \-convex in �.

Proof. It is enough to show that  i(�) is [-convex in
�. Fix �1; �2. For any � 2 [0; 1];  i(��1 + (1� �)�2)

= max
f

logP0(f jhi)e
��1�+(1��)�2�

= max
f

��1�+ (1 � �)�2�+ logP0(f jhi)

= max
f

�(�1�+ logP0(f jhi)) +

(1� �)(�2�+ logP0(f jhi)

= max
f

� logP0(f jhi)e
�1� +

(1� �) logP0(f jhi)e
�2�

� � max
f

logP0(f jhi)e
�1� +

(1� �) max
f

logP0(f jhi)e
�2�

= � i(�1) + (1� �) i(�2);

which shows that  i is convex. 2

In a similar way we can show that the set of � such
that f̂�(hi) = f̂0(hi) is convex. But it turns out that
the set is more than convex; it is a convex polyhedron.
We are intereseted in this set because it is the primary
ingredient in our optimization algorithm.

Lemma 2. The set f� : f̂�(hi) = f̂0(hi) 8ig is a
convex polyhedron.

Proof. We show that the set f� : f̂�(hi) = f̂0(hi)g
for a �xed i is a convex polyhedron. The proof is con-
structive. We have f̂�(hi) = f̂0(hi)

, P�(f jhi) � P�(f̂0(hi)jhi) 8f

, P0(f jhi)e
��(hi;f) � P0(f̂0(hi)jhi)e

��(hi;f̂0(hi))

8f : P0(f jhi) 6= 0

, �[�(hi; f) � �(hi; f̂0(hi))] � log
P0(f̂0(hi)jhi)

P0(f jhi)

� 0 8f : P0(f jhi) 6= 0:

So, f� : f̂�(hi) = f̂0(hi)g is a polyhedron for each
i. 2

With binary features, for any f; �(hi; f) �

�(hi; f̂0(hi) takes values from a set of 3n vectors where
n is the size of �. It now follows that

f� : f̂�(hi) = f̂0(hi) 8ig = f� : A� � bg

where b is an m-vector (m � 3n) with nonnegative
components and A is an m� n matrix. Recall that

D(�) = D(0) + �[d� d̂(�)] +
X

i

log
P0(f̂0(hi)jhi)

P0(f̂�(hi)jhi)
:

The utility of the set � := f� : f̂�(hi) = f̂0(hi) 8ig lies
in the fact that D(�) is linear on this set: First notice

that d̂(�) = d̂(0) on �. So, D(�) = D(0) + �[d� d̂(0)]
on �. We just made

Observation 1. D is piece-wise linear on Rn.

Here, each piece is a polytope. The objective func-
tion for an example problem on R2 is shown below.
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We can think of Rn being partioned into adja-
cent polytopes. The objective function is a continu-
ous piece-wise linear function on these polytope pieces.
Therefore, maximizing D(�) on � is reduced to a lin-
ear programming problem. We now characterize global
maximizers.

Proposition 2. �� maximizes D(�) on Rn if and

only if there is a selector d̂(�) such that d̂(��) = d.

Proof. Without loss of generality we may assume that
�� = 0, since we can always reparametrize the models
around ��.

(If) So, we have a selector such that d̂(0) = d. On
the polytope on which the selector does not change,



we have D(�) = D(0) + �[d � d̂(0)] = D(0). That is,
D(�) is constant on the polytope, and D(0) is a local
maximum. Since D is convex, D(0) is also the global
maximum.

(Only if)
Case 1. Suppose D0(0) exists at 0. Then, there is

a polytope that contains 0 on which the selector does
not change. On this polytope, D0(�) = d� d̂(0) = 0.

Case 2. (Sketch) D0(0) does not exist at 0; that is, 0
is on the boundary between polytopes. Suppose there is
a component k of (d� d̂(�)) that does not switch signs
as we move from one polytope to another. Suppose
the sign is +ve. Then, we must be able to increase
the objective function by a slight perturbation on the
optimal � i.e. [0 ...0 +� 0 .. 0] where k-th component
is �.

We now state the algorithm to �nd a maximizer of
D(�):

Iter 0. Set �(0) = 0.

Iter k+1.

Selection: Choose a selector such that 0 6= c(k) :=
d� d̂(�(k)) and at least one selection of maximizer for
a history changes from the previous iteration.

Maximization: 1. Compute the polyhedron

�(k) := f� : f̂�(hi) = f̂�(k) (hi) 8ig:

2. Solve for �� where

�� := arg max
�2�(k)

c(k)�

3. Set �(k+1) = �(k) + ��.

4. Stop if c(k)�� is less than preset precision. Else
continue iteration.

Unlike the maximum entropy (minimum Kullback-
Leibler distance) framework, optimal solution is not
necessarily unique. We used the discrimination func-
tion described here on a natural language understand-
ing task [3]. We obtained best results on the trans-
lation task by using a combination of maximum en-
tropy and maximum discrimination and with feature
selection. The framework described here is amenable
to using the two methods in combination, since we can
choose a model developed in one framework as the prior
model for the other framework.
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