
ABSTRACT

In this paper, we introduced the Predictive Embedded Zerotree
Wavelet (PEZW) codec, an image coder that achieves good
coding efficiency and versatile functionality with limited
complexity requirement. Our complexity analysis showed that
the memory requirement of this coder is less than 15k bytes
regardless of image sizes. Our simulation results also showed
that the coding efficiency of this low complexity coder is
competitive with the state of the art of wavelet coders that use
whole image buffers. The PEZW coder described in this paper
has been adopted in MPEG4 as its still texture coding tool and
is currently a proposal to the evolving JPEG2000 standard.

1. INTRODUCTION

Image compression is becoming ubiquitous in many
application areas as diverse as web browsing, multimedia
database, digital still cameras, printers, and scanners. They are
supported on many different hardware as well as software
platforms such as PCs, Unix Workstations, embedded systems
such as DSPs, and micro-controllers. All these different
applications and appliances impose different constraints and
requirements for the image coding algorithm. On the other
hand, it is highly preferred that one single image coding
algorithm can meet the requirements of the majority of these
applications so that interoperability can be guaranteed. These
conflicting requirements provide a big challenge for image
coding research.

In the last a few years, a lot of progresses have been made in
image coding algorithms, especially with the introduction of
wavelet based methods [1,2,3,4]. However, the majority of the
attention has been paid to improving coding efficiency of the
image compression algorithms. While coding efficiency is an
very important factor in judging an image coding algorithm,
even more important for practical applications, is to evaluate
the balance between coding efficiency, implementation
complexity, and features such as spatial and quality
scalability, progressive transmission, random accesses, and
error resilience. This paper is an attempt in that direction.

 In this paper, we describe the Predictive Embedded Zerotree
(PEZW) wavelet coder that achieves many of the above
mentioned objectives, namely good coding efficiency, low
complexity requirement, and versatile functionality. This
coder has been adopted in the ISO MPEG4 standard as part of

the still texture coding tools. It is also currently a proposal
from Texas Instruments to the ISO JPEG2000 committee, and
has scored well in its evaluation tests. In PEZW, the wavelet
coefficients are encoded tree by tree, while the coefficients
that are located at different decomposition levels are encoded
separately using different context models. Combined with a
low complexity, localized wavelet transform such as the block
based wavelet transform [5] or the line based wavelet
transform [6], the PEZW algorithm eliminates the need for
large image buffers. As a matter of fact, the memory
requirement of the PEZW coder is independent of the image
sizes, a very useful feature for system designs. In the
meantime, we maintain the capability to have byte-accurate
rate control, scalability, random accesses, etc. Due to its
flexibility for inserting resynchronization marker and re-
initialization at the boundary of each tree block, the error
resilience ability of the PEZW coder is also significantly
enhanced. Even though the complexity of the PEZW is much
reduced and more features are supported, the coding efficiency
of the PEZW method is as good as the state of the art wavelet
coders that use whole image buffers such as the wavelet trellis
coded quantization (WTCQ) algorithm and is much improved
compared to Shapiro’s zerotree method.

2. THE PREDICTIVE EMBEDDED
ZEROTREE (PEZW) ALGORITHM

2.1. Overview

The Predictive Embedded Zerotree (PEZW) coder is a zerotree
based codec. Zerotrees are the basic coding units for PEZW.
Since all the coefficients in one zerotree correspond to the
same spatial location, it makes it possible that we can do the
transform and entropy coding all locally, just like how JPEG
baseline can be implemented with efficient hardware
implementations. Figure 1. describes the basic data flow of the
coding algorithm. We can see that the PEZW can be efficiently
implemented as a block based coder, with the advantages that
are associated with block based coder such as low memory
storage requirement and local memory access. What is
interesting is that we can maintain the coding efficiency and
scalability features that are usually associated with global
wavelet coders that use whole image buffers.

For an input image block, we first classify it into natural
image blocks or synthetic/bi-level image blocks. For natural
image blocks, a block based localized wavelet transform was

The Predictive Embedded Zerotree Wavelet (PEZW) Coder: Low Complexity Image Coding
with Versatile Functionality

Jie Liang

Media Technology Lab, DSPS R&D Center, Texas Instruments, MS 8374
8330 LBJ Freeway, Dallas, TX 75243

email: liang@ti.com

performed. The wavelet coefficients produced by the block
wavelet transform is exactly the same as the coefficients
obtained from the wavelet transforms using a whole image
buffer [5]. Then all the wavelet coefficients are quantized with
scalar quantization with a dead-zone around zero. Then, the
quantized coefficients within the block are grouped into
zerotrees, and each tree was entropy encoded with PEZW
entropy coder from the MSB bitplane to the LSB bitplane. The
DC band was encoded separately from the AC band
coefficients, and are coded with DPCM coding. For image
blocks that are classified as bi-level or synthetic image blocks,
we bypass the wavelet transform and code the image blocks
with image domain coding methods, such as JBIG and JPEG-
LS.

Figure 1. The EPZW Codec

The PEZW entropy coder introduced several modifications
that significantly improves the original zerotree coder. The
major improvements are as follows:

x Introduction of new zerotree symbols (such as ZTRV:
non-zero-valued zerotree root) for forming zerotrees.

x Use of adaptive context models for encoding the zerotree
symbols.

x The zerotrees are encoded depth first and all bitplanes of
one zerotree are encoded before moving to the next
zerotree. This significantly reduces the complexity
requirement of the zerotree coder.

2.1. Forming Zerotrees

Zerotrees have been shown to be efficient in representing a
large portion of zero coefficients with one zerotree root
symbol, which property works well for wavelet transforms
where most of the coefficients are zero after quantization. The
zerotree symbols in PEZW are slightly different from the
zerotree symbols used in Shapiro’s EZW method. The zerotree
nodes are represented by the following symbols:

x ZTRZ (zero-valued zerotree root): the wavelet coefficient
itself is zero for a given threshold, and all its descendants
are zero.

x ZTRV (non-zero-valued zerotree root): the wavelet
coefficient itself is significant, but all its descendants are
zero.

x IZER (Isolated Zero): the wavelet coefficient itself is
zero, but not all its descendants are zero.

x IVAL (Isolated Significant): the wavelet coefficient itself
is significant, and some of its descendants are also
significant.

2.2. Context Models for Encoding Zerotree
 symbols

The zerotree symbols are encoded with context-based adaptive
arithmetic coding. To reduce complexity, we did not use high
order contexts. Instead, when encoding the zerotree symbol of
a certain coefficient, we use the zerotree symbol of the same
coefficient in the previous bitplane as the context for the
arithmetic coding. For each coefficient, the total maxim
number of context models is five, and only one memory access
is needed to form the context. By using these simple contexts,
we significantly reduced the memory requirement for storing
the context models and the number of memory accesses
needed to form the contexts. Our experience is that by using
previous zerotree symbols as context, we are able to capture
the majority of the redundancy and not much can be gained by
adding more contexts.

Figure 2. State transition map for contexts

If we consider the entropy coder as a state machine, PEZW
uses a order-1 Markov model for encoding the zerotree
symbols. Figure 3 describes the state transition of the zerotree
symbols. Solid line describes the transition that emit bits to
the decoder, and dashed line describes the transition that can
be derived from other contexts and do not emit any bits to the
decoder.

In addition to the zerotree symbols listed in section 2.1., we
have two addition states in Figure 2. The state DZTR means
that the coefficient is a descendant of ZTRZ or ZTRV in a
previous bitplane zerotree scan. The symbol SKIP is a sink
node, which means that the encoder/decoder will skip this
coefficient from now on (because they are already significant,
and no additional zerotree symbol need to be sent. Only
refinement bits need to be sent). Table 1 shows the conditional
statistics for each context. we can see that different previous
state generates significantly different statistics, which means
that these contexts are effective for entropy coding.

Previous
Symbols

 Probability (%)
 IZER IVAL ZTRV ZTRZ

DZTR

IZER

ZTRZ

ZTRV

IVAL

SKIP

PEZW

AC Contexts

MUX

Bi-level
Coder

Localized
WVT

Classifier

Scene
Describer

bi-level/
synthetic

natural

image
block

IZER 54 46 0 0
ZTRZ 15 11 52 22
DZTR 13 4 60 23

Table 1 Conditional Probability for Different Contexts

Each scale/decomposition level and each bitplane have their
context models. The arithmetic coder is initialized at the
beginning of each bitplane and subband. The initialization
eliminates dependencies of the context models and arithmetic
coders across scales and bitplanes, a very important property
for good error resilience performance. In addition,
initialization can be done at any locations that are at the
boundary of a zerotree and resynchronization marker can be
inserted, so that additional protection can be injected for a
selected area of images.

2.3. Tree-Based Localized Coding

Most wavelet based image coding methods encode the wavelet
coefficients with global information such as global context
models, rate allocation, etc. Our goal here is to demonstrate
that it is possible to achieve good coding efficiency, versatile
features and low complexity within one coding algorithm with
only local information. Figure 4 shows the scanning order of
the PEZW coder using the example of a 8x8 image block with
2 levels of decompositions.

Figure 4. Scanning order of PEZW coder

You can see that the coefficients are encoded tree-depth first.
There are totally 3 zerotrees in this 8x8 block, with roots at
coefficients labeled 2, 23, and 44. They are at the top level of
the decomposition (coarsest scale). Let us call the tree rooted
at #2 coefficient tree #0, the tree rooted at #23 coefficient tree
#1, and the tree rooted at #44 coefficient tree #2. The
encoding procedure goes as follows:

step 1. Read in all coefficients belonging to tree #m. (m was
 initialized to be zero, and T was initialized as a value
 larger than all possible wavelet coefficients).
step 2. For a given threshold T, label all the coefficients as
 ZTRZ, ZTRV, IZER, IVAL, and DZTR as defined in
 section 2.1. This is the bitplane snrl (initialized to be
 zero).

step 3. Let spl be the scale of the coefficient and encode the
 zerotree symbols (ZTRZ, ZTRV, IZER, IVAL) with
 context based arithmetic coding, using the context [spl,
 snrl], and output the bitstream to the bitstream buffer
 [spl, snrl].
step 4. Update the contexts with the current zerotree symbols.
 For coefficient with IVAL and ZTRV symbol, use
 SKIP as their current context.
step 5. Go to step 3, until all coefficients in tree #m are done.
step 6. T=T/2, snrl++, go to step 2 (encode the next bitplane).
step 7. Done with the current tree, m++, if not the last tree, go
 to step 1 (encode the next zerotree).

At any time, we are looking at only one zerotree, which are
related to the same spatial locations. This property facilitates
implementation of the image coder with very low memory
requirement.

3. FEATURES

Features of an image coder are very important for practical
applications. For instance spatial and quality scalability
enables efficient memory management for digital still camera
products. Progressive transmission effectively reduces the
bandwidth requirement of web browsing and enables
multicasting to many clients with different connection speeds.
Random access and the ability to focus on selected areas with
increased resolution are very useful for telemedicine and
interactive media services. The PEZW coder provides support
for most of the desirable features as list below:

x spatial scalability: the decoder can decode the bitstream
at a chosen resolution.

x quality scalability: the decoder can decode the image at
a certain bitrate or up to a certain bitplane. Actually, the
bitstream supports scalability in both the spatial and SNR
direction simultaneously.

x progressive transmission: the bitstream can be arranged
so that the bitstream can be decoded progressively.

x random access: the PEZW encode the bitstream using
tree as basic units. For a 4 level decomposition, the
minimal block size that a wavelet tree corresponds to is
16x16. By inserting a start code at the beginning of a tree
block, we can provide random access point to that block.
The granularity of the random access is 16x16 blocks.

x error resilience: the bitstream is separated into
segments by bitplanes and spatial levels, with each
segment started with a resynchronization marker. In
addition, start code can be inserted before any tree
blocks, providing additional protection for selected areas.

4. COMPLEXITY ANALYSIS

 Complexity requirement of an algorithm is one of the most
important considerations in practical applications. In general,
complexity can be categorized as memory requirement, speed
(which is directly related to memory access since memory
access is the bottleneck for most systems), and power

1 2 3 4 7 8 11 12
23 44 5 6 9 10 13 14
24 25 45 46 15 16 19 20
26 27 47 48 17 18 21 22

28 29 32 33 49 50 53 54
30 31 34 35 51 52 55 56
36 37 40 41 57 58 61 62
38 39 42 43 59 60 63 64

consumption. Power consumption is hard to quantify, but
should be highly correlated to memory access and running
time. In the following, we analyze the memory requirement
and memory access of the PEZW codec.

 4.1 Memory Size Requirement

 In the tree-by-tree encoding/decoding fashion, each time we
are dealing with a block of coefficients that are organized into
a tree structure. The following describes the memory allocated
in the encoder/decoder function in our current implementation.
We assume a decomposition level of 4. The memory allocated
are as follows:

x wavelet tree buffer: 341 bytes (not needed at decoder)
x model buffer: #decomposition level X #bitplanes X

#number of models X #bytes per model = 4x10x9x2 =
720 bytes

x bitstream buffer pointers: #decomposition level x
#bitplanes x 4 bytes = 4x10x4 = 160 bytes

x other programming buffer: 1193 bytes

The total is 3606 bytes. If we consider the memory
requirement of the total system, using a localized block based
overlapped wavelet transform as in [5] and a block size of
about 64x64, with 7x9 bi-orthogonal wavelets, the total system
requirement will be less than 15k bytes excluding bitstream
buffer, regardless of the input image size.

4.2 Memory Accesses

Another important question is memory access. Due to big
difference in access time of different memory types (on-
chip/cache memory access takes one cycle, and off-chip low-
cost DRAM takes a lot longer), it is important to distinguish
between the different memory access types.

(1). off-chip memory access:
Since the PEZW codec requires a small size memory, which
can be fit on-chip or in-cache, and only needs local
information, off-chip or off-cache memory accesses are greatly
reduced. If combined with a local wavelet transform, we only
need to access off-chip memory for an image block (one read
per pixel), and write to off-chip memory if the compressed
bitstream can not be fit on-chip (this is in compressed domain,
which in most case averages 0.1 write per pixel, assuming
10:1 compression). To make things better, since the off-chip
memory access timing and size can be well defined, DMA or
burst mode for DRAM access can be used to minimize
read/write time.

(2). on-chip memory access:
On-chip memory access takes zero wait state. At the encoder,
one read per pixel is needed to form the tree structure. After
that, we access the pixels from tree-root down, therefore, most
of the time, we only access a small portion of the wavelet
coefficient. At the decoder, we always decodes from top down.
Therefore, the speed of the decoder is a lot faster. The number

of memory access is also dependent on how many bitplanes
are coded. In general, we feel that due to the hierarchical
structure of the zerotree, the number of memory access is
greatly reduced.

5. CODING RESULTS

In this section, we show the coding results of the PEZW coder
with comparisons to the wavelet trellis coded quantization
(WTCQ) method. The WTCQ method represents the state of
the art in image coding, and is currently the baseline entropy
coder in the JPEG2000 verification model (VM) version 1.0.
The image used is the woman image from the JPEG testing
image suite. This image is 2048x2560 in size and
monochrome. We used Daubechies 7x9 filters and 5 levels of
decomposition. The results showed that PEZW outperformed
WTCQ at all bitrates. In general, the coding efficiency of
PEZW and WTCQ are similar, but PEZW has much lower
complexity.

 JPEG2000 VM0
 bitrate psnr

 PEZW
 bitrate diff psnr diff

 1.9179 43.64 2.0444 +0.126 43.88 +0.24
 1.0007 38.16 1.0151 +0.014 38.43 +0.27
 0.4906 33.17 0.4973 +0.006 33.39 +0.22
 0.2494 29.51 0.2469 +0.002 29.76 +0.25
 0.1237 26.81 0.1257 +0.002 27.23 +0.42
 0.0624 25.05 0.0629 +0.001 25.34 +0.29

Table 2. Coding results for woman image

6. REFERENCE

[1] Jerome M. Shapiro, “Embedded Image Coding Using
Zerotrees of Wavelet Coefficients”, IEEE Trans. Signal
Processing, December 1993.

[2] P. Sriram and M. W. Marcellin, “Image Coding Using
Wavelet Transforms and Entropy-Constrained Trellis
Coded Quantization”, IEEE Trans. Image Processing,
June 1995.

[3] A. Said and W. A. Pearlman, “A New, Fast, and Efficient
Image Coder Based on Set Partitioning in Hierarchical
Trees”, IEEE Trans. Circuit and System Video
Technology, June 1996.

[4] Jie Liang, “Highly Scalable Image Coding for
Multimedia Applications”, ACM Multimedia Conference,
October 1997, Seattle, WA.

[5] Motorola Australia Research Center, “Embedded
independent block-based coding of subband data,”
ISO/IEC JTC/SC29/WG1 Document, June 1998.

[6] C. Chrysafis and A. Ortega, “Line Based Reduced
Memory Wavelet Image Compression.,” in Proc. IEEE
Data Compression Conference, pp. 308-407, Snowbird,
UT, 1998.

