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ABSTRACT

We propose anewclass of affine higher order time-frequency rep-
resentations (HO-TFRs) unifying HO-TFRs which satisfy the de-
sirable properties of scale covariance and time-shift covariance.
This new class extends to higher order (N > 2) the affine class of
quadratic (N = 2) time-frequency representations. In this paper,
we provide five alternative formulations of the class in terms of
multi-dimensional smoothing kernels. We discuss important class
members, including thenewhigher order scalogram that is related
to the wavelet transform. We also list additional desirable proper-
ties and derive the associated kernel constraints. Finally, we con-
sider a subclass of affine HO-TFRs that intersects with a Cohen’s
class of time and frequency shift covariant HO-TFRs. A formula-
tion for HO-TFRs satisfying three covariances in this higher order
affine-Cohen intersection is derived.

1. INTRODUCTION

With the advent of the well-known wavelet transform [12] much
attention has been given to signal representations that preserve
scale changes (i.e. compressions and dilations) on the analysis sig-
nal. Such representations are referred to as scale covariant [6].
The scale covariance property has been exploited in fractal signal
analysis (e.g. the estimation of local scaling exponents [3]), and
in wideband Doppler signals (e. g. the detection and estimation of
wideband signals [3]). Scale covariance is one of the fundamental
properties of the affine class of quadratic time-frequency represen-
tations (QTFRs) [2, 3, 6, 13]. Specifically, all affine class QTFRs
preserve scale changes as well as time shifts on the analysis signal.

Any affine QTFR can be expressed as an affine smoothing of
the quadratic Wigner distribution (WD) with a two-dimensional
kernel that uniquely characterizes the QTFR [13]. For example,
the scalogram (squared magnitude of the wavelet transform) is an
important affine QTFR whose kernel is the WD of the wavelet
function. The scalogram is useful in applications requiring “con-
stant-Q” analysis (frequency dependent resolution in the time-fre-
quency plane), such as the analysis of short duration transient sig-
nals. Other desirable properties of affine QTFRs can be given in
terms of constraints on the two-dimensional kernel [2, 3, 6].

Another important QTFR class defined in terms of smooth-
ing kernels is Cohen’s class of constant time and frequency shift
covariant QTFRs [1, 2, 6]. Those affine class QTFRs which also
preserve frequency shifts, such as the WD, are also members of
Cohen’s class. They form the affine-Cohen intersection subclass
[7] satisfying (i) time-shift covariance, (ii) frequency-shift covari-
ance and (iii) scale covariance.
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In [4, 5, 16], the quadratic WD and Cohen’s class were ex-
tended to higher order. These higher order Cohen’s classes were
obtained by smoothing a higher order WD (HO-WD) with a multi-
dimensional kernel. Some higher order Cohen’s classes are co-
variant only to time shifts [4, 5], others to both time and frequency
shifts [9]. Members include the HO-WD and higher order ver-
sions of the spectrogram and the Choi-Williams distribution [4,
5]. A version of the quadratic hyperbolic class of scale covariant
and hyperbolic time-shift covariant QTFRs [11] was also extended
to higher order [9, 14]. Thus, there currently exist higher order
versions of Cohen’s class and of the hyperbolic class, but to our
knowledge, there is no higher order extension of the affine class.

In this paper, we propose anew higher order extension of
the quadratic affine class which provides a unifying framework
for HO-TFRs that satisfy the important properties of scale covari-
ance and time-shift covariance. We provide fivenewalternative
“normal form” [2, 6] expressions for affine HO-TFRs in terms of
multi-dimensional kernel functions. We list important members of
the higher order affine class, which include thenewhigher order
scalogram. In addition to scale covariance and time-shift covari-
ance, we present additional desirable properties and derive their
corresponding kernel constraints. Finally, we provide a simplified
formulation in terms of a one-dimensional function for HO-TFRs
in the intersection of the higher order affine class and higher or-
der Cohen’s class. This extends to higher order the intersection of
the quadratic affine class and Cohen’s class [7]. Members of this
higher order intersection preserve time shifts, frequency shifts and
scale changes on the analysis signal (see Figure 1).

2. NEW HIGHER ORDER AFFINE CLASS

The second order affine class [2, 3, 6, 13] consists of all QTFRs,
AX(t; f), of a signalx(t) with Fourier transform (FT)X(f), that
satisfy the scale covariance property and the time-shift covariance
property defined, respectively, as:
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Any affine QTFR can be expressed as an affine convolution [13] of
the WD of the signal, WDX(t; f), with a two-dimensional kernel,
 A(c; b), that uniquely characterizes the affine QTFR1:
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1Unless otherwise specified, integration limits are -1 to1.



We seek a higher order affine class of HO-TFRs that satisfy
higher order extensions of (1) and (2). In particular, we want to
derive the class of multi-time/uni-frequencyN th order HO-TFRs,
AN
X(t1;� � � ;tN�1; f), that satisfy:
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ForN=2, (4) and (5) simplify to (1) and (2), respectively.
Our newN th order extension of the quadratic affine class is

based on the multi-time/uni-frequency2 HO-WD [15]:
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where theN th order spectral product isV N
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the conjugation operatorLn conjugates the spectrum if the index
n is even, e.g.(L4X)(f)=X�(f). The uni-time/multi-frequency
HO-WD always satisfies the scale covariance in (4); it also satisfies
the alternating sign time-shift covariance in (5) forN even.

We propose a multi-time/uni-frequency higher order affine class
formulation that is a multi-dimensional affine convolution of the
HO-WD in (6) with anN -dimensional kernel, NA (c1;� � � ;cN�1; b):
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As desired, (7) simplifies to the quadratic affine class in (3) when
N = 2. The resulting affine HO-TFRs in (7) always satisfy the
desirable properties in (4) and (5). The HO-WD is a member of
the new higher order affine class with kernel NWD(c1;� � � ;cN�1; b)

=�(b+1)
QN�1

i=1 �(ci). We obtainnewHO-TFRs such as the higher
order scalogram by appropriately choosing the kernel function NA
in (7) (see section 2.1).

In Table 1, we propose four additional normal forms [2, 6]
equivalent to any affine HO-TFR in (7). These alternative forms
offer additional insight and often computational advantage. Nor-
mal forms A-I and A-II are given in terms of the signal,x(t), and
its spectrum,X(f), respectively. Normal form A-III repeats (7).
Normal form A-IV is in terms of a higher order ambiguity func-
tion. Normal form A-V is a version of A-II with simplified spec-
tral arguments and is theN th order version of the second order

2By choosing the multi-time/uni-frequency form of the HO-WD, which
is the dual of the uni-time/multi-frequency HO-WD in [4, 5], the resulting
higher order affine class extends the affine class properties of scale co-
variance and time-shift covariance as opposed to extending the dual affine
class properties of scale covariance andfrequency-shift covariance. By the
“dual” of a QTFR or HO-TFR, we mean interchanging signal termsx with
spectral termsX, swapping temporal variables (e.g. time lag� ) with spec-
tral variables (e.g. frequency lag�) and interchanging a forward transform
(e.g. FT) with its inverse transform, (e.g. inverse FT).

“bi-frequency” form [2]. The kernels�NA , �NA ,  NA and	N
A in

normal forms A-I – A-IV, respectively, are interrelated by multi-
dimensional FTs:
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The kernels in normal forms A-V and A-II are related as:
�NA(b0; b1;� � �; bN�1)=�NA (
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N

PN�1
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2.1. Higher order affine class members

The quadratic scalogram (SCAL) is defined as the squared magni-
tude of the well-known wavelet transform (WT) [12]:

SCALX(t; f)= jWTX(t; f)j
2=WT �
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where the WT is defined as:
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Here, x(t) is the input signal,h(t) is the wavelet function and
fr > 0 is a reference frequency. The scalogram kernel in (3) is
 SCAL(c; b) = WDH(�c=fr;�frb), whereH(f) is the FT of
h(t). Since the scalogram is a correlation between the signal and
the dilated/compressed wavelet, it implements a multi-resolution
analysis.

We propose the higher order scalogram (HO-SCAL) as a mem-
ber of the higher order affine class in (7) whose kernel is given by
 NSCAL(c1;� � � ;cN�1; b)=HO-WDN�

H (�c1
fr
;� � �;

�cN�1
fr

;�frb).
Thus, the HO-SCAL is a multi-dimensional affine convolution of
the HO-WD of the input signal with the HO-WD of the wavelet.
Substituting NSCAL into (7), we obtain the higher order extension
of the scalogram:

SCALNX(t1;� � � ;tN�1; f)=
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ti; f
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whereLn conjugates the WT in (10) whenn is even. ForN =2,
the HO-SCAL in (11) simplifies to the quadratic scalogram in (9).

Other members of the higher order affine class and their cor-
responding kernels are listed in Table 2. They include the multi-
time/uni-frequency version of the higher order Choi-Williams dis-
tribution (HO-CWD) in [5], and the� form of the HO-WD (HO-
�WD) that simplifies to the HO-WD for�=0, and to the higher
order Rihaczek distribution (HO-RD) for�=�1=N .

2.2. Desirable properties of the higher order affine class

HO-TFRs in the higher order affine class defined in (7) always
satisfy the scale covariance property in (4) forN 2 N and the al-
ternating sign time-shift covariance property in (5) forN even.
Moreover, they satisfy additional desirable properties important
for time-frequency analysis provided that their multi-dimensional
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Table 1: Five equivalent “normal forms” and their corresponding kernels for HO-TFRs,AX , in the higher order affine class. In A-I,
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spectral product,V N
X , in A-II and the HO-WD, WDNX , in A-III are defined in (6). In A-IV, the multi-dimensional FT of the HO-WD [5] is

the higher order ambiguity function: AFNX(�; �1;� � � ;�N�1)=
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Affine Normal form A-IV kernel Properties
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Table 2:Some affine HO-TFRs and their associated normal form
A-IV kernel,	N

A (�; �1;� � � ;�N�1), along with properties in Sec-
tion 2.2 that each HO-TFR satisfies. In the scalogram kernel,
H(f) is the FT of the wavelet functionh(t) in (10). HO-TFR
acronyms are defined in the text in Section 2.1

kernel	N
A in normal form A-IV in Table 2 is properly constrained

as shown below.
[P -1] N th order scale covariance: The higher order affine class
preserves scale changes on the analysis spectrumX(f) as in (4).
That is, if the frequency axis ofX(f) is dilated by the factora,
then so too is the frequency axis ofAN

X . The multi-dimensional
time axes are compressed by the factor1=a.
[P -2] Alternating sign time-shift covariance: Affine HO-TFRs
(for N even) always preserve time shifts which alternate in sign
along the multi-time axes as in (5). The alternating sign is due to
the conjugation of every other signal term [10] using the conjuga-
tion operatorLn in (6). In particular, shifting the temporal signal
by a constant� translates the affine HO-TFR along its temporal
axes by�� .
[P -3] Frequency-shift covariance: Some affine HO-TFRs pre-
serve constant frequency shifts. That is,Y (f)=X(f�f0) =)
AN
Y (t1;� � � ;tN�1; f)=A

N
X(t1;� � � ;tN�1; f�f0), provided that

	N
A (�; �1;� � � ;�N�1) = e�j2��

QN�1
i=1 S(��i). Here,S(�) is a

one-dimensional function. Affine HO-TFRs which satisfyP -3 are
also members of the multi-time/uni-frequency version of Cohen’s
class [4, 5] (cf. section 3).
[P -4] Frequency marginal: Integrating an affine HO-TFR along
the multi-time axes equals theN th order spectral moment:R
t1
� � �
R
tN�1
AN
X(t1;� � � ;tN�1; f) dt1� � �dtN�1=X

�(f)
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provided	N
A(�; 0;� � �; 0)=e

�j2�� .
[P -5] Frequency localization: If the spectrum is perfectly con-
centrated along frequencyf=f0, then its affine HO-TFR will also
be concentrated about the same frequency:

X(f)=�(f�f0) =) AN
X(t1;� � � ;tN�1; f)=�(f � f0),

provided	N
A (�; 0; � � � ; 0) = e�j2�� .

In Table 2, we summarize examples of affine HO-TFRs, their
corresponding kernels and the aforementioned properties that they
each satisfy.

3. AFFINE–COHEN INTERSECTION OF HO-TFRS

In Section 2, we proposed the new affine class of HO-TFRs in (7)
which satisfy the scale covariance propertyP -1 and the time-shift
covariance propertyP -2. In [5, 8], a dual higher order Cohen’s
class was proposed consisting of HO-TFRs,CN

X (t1;� � � ;tN�1; f),
which satisfy the time-shift covariance propertyP -2, and the freq-
uency-shift covariance propertyP -3. These Cohen’s class multi-
time/uni-frequency HO-TFRs are expressed as:

CN
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where	̂N
C is a kernel characterizingCN

X , and AFNX is the higher
order ambiguity function in Table 1. We propose the intersection
subclass of thenewhigher order affine class and the higher order
Cohen’s class in (12). Thus, we want to group together HO-TFRs
satisfying three covariance properties: scale-covarianceP -1, time-
shift covarianceP -2, and frequency-shift covarianceP -3.

To obtain this new intersection, we find the affine HO-TFRs
which satisfyP -3. A sufficient condition for such affine class HO-
TFRs is that they have kernels of the form,	N

A (�; �1;� � � ;�N�1)=

e�j2��
QN�1

i=1 S(��i), whereS(�) is a one-dimensional, non-zero
function. Similarly, we find the Cohen’s class HO-TFRs which sat-
isfy P -1. Such Cohen’s class HO-TFRs have kernels of the form,
	̂N
C (�; �1;� � � ;�N�1) =

QN�1
i=1 S(��i), for the same one-dimen-

sional functionS(�). Combining these two kernel constraints, we
show that any HO-TFR in the higher order affine-Cohen intersec-
tion subclass, A-CNX , has an affine class kernel	N

A-C that is related
to its Cohen’s class kernel̂	N

A-C as:

	N
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N�1Y
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S(��n): (13)



Substituting (13) into normal form A-IV, and also into normal
form A-I using equation (8), members of this intersection subclass,
A-CN

X , can be expressed in terms of the one-dimensional function
S(�) or its inverse FTs(�), respectively as:

A-CN
X(t1;� � � ;tN�1; f)=
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Thus, (14) extends to higher order the quadratic affine-Cohen in-
tersection subclass in [7]. Note that any HO-TFR in the inter-
section in (14) has a relatively simple structure that may facilitate
analysis and expedite computation.

Figure 1 depicts the higher order affine-Cohen intersection.
Some intersection members include the HO-WD withS(�) = 1,
the HO-RD withS(�) = e�j2�

�
N , the HO-�WD with S(�) =

ej2��� , and the HO-CWD withS(�) = e��
2=� (cf. Table 2). In

contrast, the affine HO-SCAL in Table 2 does not satisfyP -3 and
is not a member of the higher order Cohen’s class.

HO-CC HO-AC

HO-SPEC HO-SCALHO-RD
HO-WD

HO-CWD
αHO-   WD

Figure 1. The intersection of the higher order affine class
(HO-AC) with the higher order Cohen’s class (HO-CC) is de-
picted. Some intersection members include the HO-WD, HO-
RD, HO-�WD, and the HO-CWD. The higher order spectro-
gram (HO-SPEC) [4] and thenew HO-SCAL (higher order
jwavelet transformj2) are members of only the HO-CC and HO-
AC, respectively. The shaded region corresponds to thenewclass
proposed in this paper.

4. CONCLUSION

In this paper, we proposed thenew higher order affine class of
HO-TFRs that preserve scale changes and time shifts in (4) and
(5). It extends to higher order (N > 2) the second order (N = 2)
affine class of scale covariant and time-shift covariant QTFRs. We
derived five alternative “normal form” expressions of an affine
HO-TFR in terms of multi-dimensional kernel functions. We dis-
cussed desirable properties and derived the corresponding kernel
constraints necessary for an affine HO-TFR to satisfy these prop-
erties. We discussed important members of thenewhigher order
affine class, including thenew higher order scalogram. Finally,
we provided a unifying framework for the intersection of thenew
higher order affine class with the previously developed higher or-
der Cohen’s class, by showing how their respective kernels are re-
lated. We also provided a simplified formulation for any member

of the new higher order affine-Cohen intersection subclass in terms
of a one-dimensional function.
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