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ABSTRACT

Two models of statistical dependence between acoustic model pa-
rameters of a large vocabulary conversational speech recognition
(LVCSR) system are investigated for the purpose of rapid speaker-
and environment-adaptation from a very small amount of speech:
(i) a Gaussian multiscale process governed by a stochastic linear
dynamical system on a tree, and (ii) a simple hierarchical tree-
structured prior. Both methods permit Bayesian (MAP) estima-
tion of acoustic model parameters without parameter-tying even
when no samples are available to independently estimate some pa-
rameters due to the limited amount of adaptation data. Modeling
methodologies are contrasted, and comparative performance of the
two on the Switchboard task is presented under identical test con-
ditions for supervised and unsupervised adaptation with controlled
amounts of adaptation speech. Both methods provide significant
(1% absolute) gain in accuracy over adaptation methods that do
not exploit the dependence between acoustic model parameters.

1. INTRODUCTION

Today’s speaker-independent LVCSR systems contain from a few
hundreds of thousands to several million acoustic model parame-
ters. It is well known (e.g.[4, 8, 14]) that the performance of these
systems improves dramatically if the model parameters are suit-
ably adapted to test conditions, particularly when there is a mis-
match between the acoustic environment or the speaker character-
istics in the training and test speech. However, due to the large
number of the parameters to be adjusted in comparison with the
amount of realistically available adaptation data, one usually takes
recourse to tying (perhaps hierarchically) the adjustments of indi-
vidual acoustic models. The extent of tying depends on the amount
of available adaptation speech – the less the data, the more one
ties parameters. When only a few seconds of speech is available
for adaptation, most common techniques resort to a single (global)
adjustment of all acoustic model parameters.

Recently, statistical modeling of the model parameters them-
selves has received some attention [1, 6, 11, 12]. For the ease
of discussion, consider an adaptation scheme in which one adjusts
only the mean vectors (via an additivebias) of the Gaussian output
densities of a hidden Markov model (HMM) based LVCSR system
to a new speaker or environment. One may explicitly model corre-
lation between these biases (e.g.[3, 7]) or have an implicit model
(e.g. [6, 11, 12]). In either case, the resulting statistical model
provides a framework to estimateall the biases (including those
unseen in the adaptation speech) based onall available data. We
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investigate the performance of two such tree-structured schemes
[6, 12] on Switchboard, a corpus of American English telephone
conversations.

Section 2 begins with a brief description of a Gaussian mul-
tiscale process whose evolution (in scale) is governed by a linear
dynamical system. The presentation is limited to the case of bias
estimation for adaptation and the reader is referred [5] for details.
This is followed by a brief review of another tree-based model,
structural MAP, originally presented in [12]. A comparison of the
two modeling methodologies is made. Section 3 then presents the
main results1 of this paper.

2. TREE-STRUCTURED MODELS OF DEPENDENCE

Two models of parameter dependence are considered here.

2.1. Multiscale Tree Processes
Multiscale stochastic processes are an important class of models,
of which a particularly useful subclass is based on scale-recursive
dynamics on trees [2, 9]. They allow efficient model estimation
and likelihood calculation resulting in a variety of applications.
Denoting a node in the tree bytwith parentt�, a state-space model
for the evolution in scale of the Gaussian tree-based processX and
its noisy observationY is given by

x(t) = A(t)x(t�) + w(t) (1)

y(t) = C(t)x(t) + v(t) (2)

wherex(t) is the state of the process at nodet. The statex(0) at
the root node0 has distributionN (0;�(0)), whereN (�;�) de-
notes a Gaussian density with mean� and covariance�. The pro-
cess noisew(t) is white, independent ofx(0), and has distribution
N (0; Q(t)). The statex(t) is observed via a noisy measurement
y(t), where the measurement noisev(t) is white, independent of
x(0) andw(t), and has distributionN (0; R(t)). A tree with only
one child per parent may be interpreted as the familiar linear dy-
namical system that evolves in time.

Given a tree topology and training observationsY , the param-
eters�(0), A(t), Q(t), C(t) andR(t) of the tree are estimated
using an Expectation-Maximization algorithm [6]. Given a tree
with its parameters and observationsY at (possibly only a sub-
set of) the nodes, the smoothed (MAP or MMSE) estimates of the
stateŝx(tjY ) = Efx(t)jY g are computed via a generalization of
the Rauch-Tung-Striebel algorithm [2].

1This research was conducted at the 1998 Johns Hopkins University
Summer Research Workshop on Language Engineering. See the “Rapid
Recognizer Adaptation” project web page [15] for various details.



Let �SIi , i = 1; : : : ;M , denote means of the Gaussian den-
sities constituting the acoustic models in a speaker-independent
LVCSR system, and�SAi = �SIi +�i denote the corresponding
speaker-adapted means. For the purpose of robust estimation, the
M densities are partitioned intoL classesGl, l = 1; : : : ; L, and
one estimates only acommon- or class-biasx(l) shared by all the
densities in the class, so that

�
SA

i = �
SI

i + x(l); 8 i 2 Gl: (3)

The usual practice is to adjust the number of classesL in accor-
dance with the amount of available adaptation data, and is usually
of the order of 10 or smaller for rapid adaptation based on a few
seconds of speech. We propose to use large values ofL (150-250)
even when a very small amount of speech is available for adapta-
tion. To obtain robust estimates of the class-biasesx(l), we define
a tree withL leaves, associate the leaf nodes with thex(l)’s, and
model the biases as a Gaussian multiscale process given by (1).
From a block of adaptation data, ML estimatesy(l) of biases at a
subset of the leaves are used to obtaina posterioriestimates of all
the biases,̂x(l). These smoothed bias estimates are used in (3).

2.2. Structural MAP Adaptation

The scheme described above bears strong resemblance to SMAP,
an adaptation scheme based on maximuma posterioriprobability
under a structured prior presented in [12]. The SMAP scheme
is briefly described next, so as to enable drawing parallels with
multiscale models. ∆
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The speaker-dependent biases�i are assumed to be jointly Gaus-
sian with a hierarchical dependence structure. One may hypothe-
size that the class-bias� of theM densities is a random variable
with a priorN (0; ��1

0
), and that each individual bias�i has a con-

ditional prior densityN (�; ��1
i

�2i ). If i(n), n = 1; : : : ; N , de-
notes the posterior probability, computed by the forward-backward
procedure, that then-th acoustic frameon of the adaptation speech
comes from thei-th output density,~� denotes the ML estimate of
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and the conditional MAP estimates of the individual biases are
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The analysis and the formulae extend to a tree structured organi-
zation of theM biases�i as shown in [12].

2.3. Comparison of SMAP and Multiscale Models

The SMAP methodologyimposesa dependence structure between
the�i’s through the choice of the�i ’s, while the multiscale ap-
proach estimates this dependence structure via training data. Equa-
tion (4) for obtaining� in the SMAP scheme is identical to the up-
ward sweep in the state estimation formulae for the internal nodes
of a multiscale tree withA(t) = I, Q(t) = 0, �(0) = 0. Once
� has been estimated, the multiscale tree uses theestimatederror
covariances of the parent and thei-th child to obtain the MMSE
(also MAP) estimate of�i. In the SMAP procedure, the choice
of the hyperparameter�i, together with the variance�2i of thei-th
density imposes a covariance��1

i
�2i on the parent’sa priori esti-

mate of�i. Thus multiscale models enjoy the advantage that the
designer need only be concerned with constructing a reasonable
topology (and parameter tying) and the model parameters are es-
timated from training data. Multiscale trees are also more general
in terms of the kinds of processes they can model (e.g. [9]), and
while we have not formally demonstrated it here, we view SMAP
as a special case of a multiscale tree model.

Our implementations of the SMAP and multiscale tree models
are not perfectly comparable2. However, their adaptation perfor-
mance may still be compared, as the task definition (unadapted
system, adaptation speech, test set,etc.) is identical for both cases.

3. EXPERIMENTAL RESULTS ON SWITCHBOARD

The two adaptation schemes described above are tested on the
Switchboard corpus of conversational telephone speech. We begin
with a description of the LVCSR system and present the perfor-
mance of the two schemes under various conditions.

3.1. Setup for Rapid Adaptation

The speaker-independent LVCSR system is HTK-based [13], with
state clustered triphone acoustic models trained on about 60 hours
of speech3. The test set comprises 19 conversations (� 2 hours)
with over 2400 utterances containing a total of about 18000 words.
The speaker-independent system has a word error rate (WER) of
45.2% on this test set. Bigram word lattices generated using the
speaker-independent system are rescored by the adapted acoustic
models described in the following.

In this paper, each adaptation scheme is tested under four con-
ditions:� 30 seconds of supervised adaptation,� 30 seconds of un-
supervised adaptation on transcriptions produced by the speaker-
independent system,� 60 seconds of supervised adaptation and�
60 seconds of unsupervised adaptation.

2The topology of the trees used for SMAP and the multiscale model are
different due to our current implementation. Furthermore, SMAP is imple-
mented component-wise in the bias vector, corresponding to a diagonal
covariance assumption, while the multiscale trees are implemented with
full error covariance (albeit based on empirical variance of the class-biases
across the training speakers).

3The front-end performs a PLP analysis at a 10ms frame rate, and sub-
tracts the cepstral mean of each individual utterance from all the samples
of that utterance. The system comprises about 7000 tied states each with
an output modeled by a mixture of up to 6 Gaussian densities. The vo-
cabulary contains 22K words. A standard back-off bigram language model
trained on about 2.1 million words of transcribed text is used during decod-
ing. No speaker normalization (e.g. Vocal Tract Length Normalization) is
performed during training or testing.



3.2. Multiscale Trees
To use a multiscale model in an adaptation experiment, we need to
first define (i) theL bias-classes, (ii) the multiscale tree topology
with bias classes as the leaves, (iii) the model parameter tying (if
any), and then estimate the model parameters from the class-biases
of the training speakers (EM training).
Bias class definition: The HMM states from which the acoustic
models of the triphones are constructed have an inherent hierarchi-
cal partition due to the triphone state-clustering used in our system.
For instance, the initial states of all the triphones of the phoneme
“aa” correspond to the leaves of a decision tree, all the middle
states to the leaves of a second decision tree, and the final states to
that of yet another decision tree. There are about 150 such trees
(three corresponding to each phoneme) in the system. In the exper-
iments described here, we take advantage of this fact to define: (i)
150 bias-classes, each containing all states of one state-clustering
tree, and (ii) 250 bias-classes obtained by starting with the 150
classes and dividing them further exactly as we do for construct-
ing the state-clustering trees in HTK [13], and stopping when 250
leaves are obtained. Thus the 250 class partition is a refinement
of the 150 classes but coarser than the inherent system partition.
Gaussians in each class are tied for adaptation according to (3).
Tree topology definition: In this paper, we do not address the is-
sue of optimal dependence tree topology [10] for adaptation. We
instead use a reasonable topology which groups biases of Gaussian
means of one phoneme closer to each other and models the depen-
dence across phonemes by estimating the parameters of the multi-
scale tree model. We model the overall dependence of the biases
by defining a superstructure on top of the 150 roots of the state-
clustering trees. The resulting trees, viewed top-down, divide all

~50 Phones ~50 Phones ~50 Phones SIL

State 1 State 2 State 3
3 States

150 Nodes

250 Leaves

Global Bias

Figure 1: Modeling dependence above the 150 triphone state clus-
ters using multiscale trees with (a) 150 and (b) 250 bias-classes.

the Gaussian densities in the system according to their state num-
ber within the model of the triphone and then between phonemes.
Figure 1 illustrates dependence structures with 150 and 250 leaves
that we have investigated.

Another axis that we explore is that of structure in the depen-
dence between phonetic classes: (i) a flat structure in which all
the 50 phonemic classes are descendants of a common ancestor
as shown in Figure 1(a), and (ii) a structure with 11 intermediate
nodes each governing a subset of the 50 phonemic classes. The
partitioning of the 50 phonemes into the 11 subsets is based on
articulatory-phonetic features. Figure 2 illustrates a modification
of Figure 1(a) to provide such additional structure.

The multiscale model also allows the use of additional inde-
pendent observationsy(t) in the internal nodes of the tree. For our
bias adaptation experiments, this amounts to providing additional
estimates of the bias of aclusterof some of the 150 or 250 biases.
We investigate the use of one such additional measurement: the

~50 Phones ~50 Phones ~50 Phones SIL

State 1 State 2 State 3

Global Bias

Figure 2: A 150-leaf multiscale tree with richer structure

Mode and ML 150 Richer Global
Dur (sec.) Est. Tree Struct Bias

Sup (30) 44.3% 43.2% 43.2% 43.1%
Unsup (30) 45.0% 44.1% 43.8% 44.0%
Sup (60) 42.9% 42.2% 42.1% 42.3%
Unsup (60) 44.6% 43.7% 43.6% 43.6%

Table 1: Recognition WER for 150 bias classes with� ML esti-
mates,� multiscale tree of Figure 1(a),� Figure 2, and� Figure
1(a) with additional global information

global biasof all the Gaussian components in the system. By pro-
viding this estimate at theroot of the tree, one may expect that a
robust “anchor” is provided at the root when the data at the leaves
are really sparse, and the internal bottom-up estimate at the root is
susceptible to “system noise.” The use of such additional informa-
tion is investigated for both dependence structures of Figure 1.
Tree model parameter tying definition: The tree model param-
eters can be tied, i.e., a group of nodes may share the sameA
parameter. Of course, tying the tree parameters does not imply
tying the smoothed estimateŝx(l) at the nodes. For the 150-leaf
models, each node in the tree has its own set of parameters (A;Q).
For the 250-leaf models, the nodes below the corresponding leaves
of the 150-leaf tree share the same (A;Q). Therefore the number
of parameters is equal in the 150- and 250-leaf models.
Parameter training: TheL biasesfy(l); l = 1; : : : ; Lg of each
training speaker contribute one sample of the multiscale model.
The tree model parameters (�(0); A(t);Q(t)) are estimated from
the samples over all the training speakers using an EM algorithm.
Details of the training procedure are in [5, 6].
Results: Recognition results for three dependence models with
150 leaves are presented in Table 1. The columns labeled ML cor-
respond to using the ML estimatey(l) of the bias of classl where
available and backing off to the global ML bias where it is not. The
recognition results for two dependence models with 250 leaves are
presented in Table 2. There is thus a 0.6-1.1% (absolute) reduction
in WER over the ML scheme depending on adaptation conditions.
Also, multiscale models provide a 1% improvement even when
only 30 seconds of unsupervised adaptation is performed, where
the ML scheme provides almost no gains or even degrades. In the-

Mode and ML 250 Global
Dur (sec.) Est. Tree Bias

Sup (30) 44.9% 43.0% 43.2%
Unsup (30) 45.5% 44.1% 44.1%
Sup (60) 43.0% 42.1% 42.0%
Unsup (60) 44.5% 43.2% 43.2%

Table 2: Recognition WER for 250 bias classes with� ML esti-
mates,� multiscale tree of figure 1(b) without and� with addi-
tional global information



ory, a larger tree (250) should be no worse than a smaller one (150)
even if there is little data (30 sec.) since the estimates are smoothed
in both cases, and we do find this to be true. Larger trees perform
better, as expected, when more data is available.

3.3. Structural MAP

A hierarchical prior is used in the SMAP scheme which assumes
that the biases of the Gaussian densities in the 50 phonetic classes
are mutually independent. Within each phonetic class, the topol-
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Figure 3: Structured priors used for SMAP adaptation

ogy of Figure 3 is used to first estimate a bias for all the compo-
nents of a phone, then a bias for each of the three states of the
phone, and finally that of each individual Gaussian density. Note

Mode and Hyperparameters�0; �1; �2
Dur (sec.) 1,1,1 10,10,10 0.3,1,10 3.3,10,100

Sup (30) 44.0% 43.8% 43.2% 44.1%
Unsup (30) 45.4% 44.8% 44.5% 44.6%
Sup (60) 43.3% 43.2% 42.2% 43.6%
Unsup (60) 45.5% 44.7% 44.5% 44.7%

Table 3: Recognition WER (%) for SMAP adaptation for different
values of the hyperparameters (c.f. Figure 3).

from the figure that different values of the hyperparameters (� ) are
investigated and the recognition performance is presented in Table
3. Also observe that for supervised adaptation, SMAP provides al-
most the same gains over a comparable ML adaptation scheme as
the corresponding multiscale methods in Table 2 (1% absolute re-
duction in WER). SMAP seems to be less effective than multiscale
trees in the unsupervised case.

4. CONCLUSIONS

In this paper we compared two tree-based models: SMAP and
Multiscale models for rapid speaker adaptation. Experimental re-
sults on Switchboard show that both models yield greater reduc-
tion in WER (�1% absolute) across a range of conditions than ML
techniques which do not exploit parameter dependence.

We find the two schemes to be competitive, with the multi-
scale tree performing a little better, particularly for unsupervised
adaptation. We also find richer dependence structure to be slightly
beneficial. There is no gain from the use of the global ML bias in
the multiscale model, probably due to the fact that is not indepen-
dent of the class-biases (considered jointly).
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