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ABSTRACT

We have given a solution to the problem of unsuper-

vised classi�cation of multidimensional data. Our ap-

proach is based on Bayesian estimation which regards

the number of classes, the data partition and the pa-

rameter vectors that describe the density of classes as

unknowns. We compute their MAP estimates simulta-

neously by maximizing their joint posterior probability

density given the data. The concept of partition as a vari-

able to be estimated is a unique feature of our method.

This formulation also solves the problem of validating

clusters obtained from various methods. Our method can

also incorporate any additional information about a class

while assigning its probability density. It can also utilize

any available training samples that arise from di�erent

classes.

We provide a descent algorithm that starts with an

arbitrary partition of the data and iteratively computes

the MAP estimates. The proposed method is applied to

target tracking data. The results obtained demonstrate

the power of Bayesian approach for unsupervised classi-

�cation.

1. INTRODUCTION

In unsupervised classi�cation, the given data Z = fzi; i =
1; � � � ; Ng; zi 2 Rm has to be partitioned into mutu-
ally exclusive and totally inclusive subsets of Z namely
c = fc1; � � � ; csg; ck � Z so that all the members be-
longing to a class are close to each other in some sense.
The choice of s is itself a problem. The solution should
include a compact description of each class so that a new
unlabeled data point can be classi�ed easily. Next the
methodology should include the validation of the parti-
tion, i.e does the given partition adequately explain the
data? Given two di�erent partitions, which one of them
gives a better explanation of the data?
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When s is �xed, partitions are given by the so called
clustering algorithms [1, 2, 3, 4]; however there is no
guarantee that the partition really explains the data.
The criterion function used in the algorithms focus only
on the centroid of clusters, not on the shape and ori-
entation of the clusters. Further, the criterion function
usually has numerous local minima and many methods
stop with obtaining one arbitrary local minimum. Cur-
rently there is no method to compare di�erent cluster
sets derived for the same data obtained from di�erent
methods.

In the Bayes approach given in this paper the par-
tition c is itself regarded as a variable to be chosen
from the appropriate space. When s is known, c =
fc1; � � � ; csg; c 2 
s;s, the set of all partitions of set Z so
that none of the sets ck in c are null. When s is not spec-
i�ed, s � s0, then c = fc1; � � � ; cs0g; c 2 
s0 , the set of
all partitions of Z into s0 subsets. The members of class
k are described by the probability density pk(zi j �k), pk
is a known function and �k is a vector parameter whose
values have to be determined, �k 2 Rnk. The unknowns
are fc = fc1; � � � ; csg, � = f�1; � � � ; �sgg.

The Bayes approach allows us to estimate s, the num-
ber of classes given that s � s0. Correspondingly the
best partition c has to be searched in the space c 2 
s0.
It also solves the problem of partition comparison or clus-
ter validation. Two di�erent partitions c and c0 involv-
ing di�erent values of s can be compared by comput-
ing the ratio of the corresponding posterior probabilities
P (c j Z) and P (c0 j Z). Our method can also utilize
any additional information on the classes in assigning
the probability density function pk. For example, when
all the members zi are clustered tightly around a straight
line or a convex curve or a 2-D plane.

2. OPTIMAL PARTITION WITH A GIVEN
NUMBER OF CLASSES

Let the data set be Z = fzi; i = 1; � � � ; Ng; zi 2 Rm

whose members are statistically independent. Let s be



the number of distinct classes in Z, s is known to us. Let
the s associated probability densities be pk(zi j �k); �k 2
Rnk ; k = 1; � � � ; s: Let the set c = fc1; � � � ; csg be a par-
tition of Z into s classes such that

ck � Z; 8k = 1; � � � ; s; ci \ cj = Null; i 6= jSs

k=1 ck = Z: ck 6= Null 8k = 1; � � � ; s:
(1)

Each ck is a subset of Z whose members are described by
the density pk. Let 
s;s be the set of all possible distinct
partitions of Z obeying (1). c and c0 are di�erent par-
titions if they are di�erent sets. The number of distinct
partitions, which is the cardinality of 
s;s is

#
s;s =
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s!

sX
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(�1)i
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(s � i)N �
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s!
(2)

c and �k; k = 1; � � � ; s are the variables to be estimated.
We regard c 2 
s;s; �k 2 Rnk; k = 1; � � � ; s as indepen-
dent random variables. P (c), the prior probability asso-
ciated with c is same for all c; P (c) = 1

#
s;s
; 8c 2 
s;s.

Let � = f�1; � � � ; �sg. Let p(�k) be the prior probabil-
ity density of �k such that each component is uniformly
distributed. Since the priors of � and c are uniform, the
MAP estimates (c�; ��) are given by

(c�; ��) = Arg max
c;�

P (Z j c; �): (3)

Since the data Z is independent, the joint density of Z
has the following form:

P (Z j c; �) =
sY

k=1

 Y
zi2ck

pk(zi j �k):

!
(4)

Let fk(zi; �k) = �2 lnpk(zi j �k), then

J(c; �) = �2 lnP (Z j c; �) =
sX

k=1

X
zi2ck

fk(zi; �k): (5)

and

(c�; ��) = Arg min
c;�

J(c; �) (6)

J(c; �) has interesting extremal properties.
For a �xed � the value of c which minimizes J(c; �)

w.r.t c can be obtained using

ĉ�;k = fzi : fk(zi; �k) � fu(zi; �u);

8k 6= u; u = 1; � � � ; sg; k = 1; � � � ; s (7)

Similarly for a �xed c, the minimizing value of � is
unique and it can be obtained using

�̂c;k = min
�k2Rnk

X
zi2ck

fk(zi; �k); k = 1; � � � ; s: (8)

When pk are given by pk(zi j �k) � Gauss(�k; rk),

�k = f�k; rkg an explicit expression for �̂c;k can be
given because of the structure of fk as follows

fk(zi; �k) =

(zi � �k)
Tr�1k (zi � �k) + ln j det rk j +m ln 2� (9)

Let �k = (�k; rk), where �k is an m-vector and rk is an
m �m covariance matrix. Then

�̂c;k =
1

N1k

X
zi2ck

zi

r̂c;k =
1

N1k

X
zi2ck

(zi � �̂c;k)(zi � �̂c;k)
T

N1k = #ck (10)

A simple descent algorithm is given for �nding a local
minimum of J(c; �). It is done by changing � and c

alternatively using expressions (7) and (8), each time
having a reduction in J(c; �). Note that a local minimum
need not be a global minimum, since we perturb only c

or � at one time, not simultaneously.
Since the determination of �k utilizing all zi in ck

involves the inversion of a matrix, assume that the num-
ber of members in ck must be greater than 2nk. Let us
call this assumption (A1).
Descent Algorithm(with assumption A1)

1. Let cj = (cj1; � � � ; c
j
s) and �

j = (�j1; � � � ; �
j
s) be

estimates at the end of jth iteration. Choose
c1 arbitrarily, perhaps from a solution of a
clustering algorithm with random seeds.

2. Given c(j), compute �(j) using the formula in
(8).

3. Given �(j), compute c(j+1) using (7).

4. Stop if c(j) = c(j+1); otherwise goto 2.

End.
Note that the computational e�ort for �nding a local
minimum is very little. It involves the inversion of a ma-
trix of relatively small dimension in (8) and data com-
parisons in (7). The proof of convergence of the descent
algorithm is given in [5].

3. CHOICE OF S, THE NUMBER OF
DISTINCT CLASSES

The problem of choosing the value of s is known as
model order identi�cation or cluster validation. A pop-
ular method is to use the Akaike's information criterion.
However, it has been shown in [6] that this criterion does
not yield consistent estimates. In our method we obtain



the estimate of s via Bayesian estimation by considering
s also as a random variable.

Using the Bayes formalism we will compare all the
partitions c of Z in 
s;s for s, 1 � s � s0, s0 being
known and �nd the best partition, and incidentally the
best value of s. So s is included as an unknown to be
estimated, 1 � s � s0. The optimal Bayes estimator of
(s; c; �) is given by

(s�; c�s� ; �
�) = Arg min

1�s�s0

�
min
c2
s;s

min
�k2Rnk

Hs

�
(11)

where

Hs = � ln

(
p(Z j s; c; �)P (c j s)

 
sY

k=1

p(�k j s)

!
P (s)

)

The prior probabilities of s and c given s are chosen as
follows:

P (s) = 1=s0; s = 1; � � � ; s0 (12)

P (c j s) =
1

#
s;s

;
X
c2
s;s

P (c j s) = 1 (13)

And the prior probability of each component in �k is
uniform and equals 1=Lk. Since Lk is the prior density of
�k, it should cover the total range of all the components
of �k.
Comparing partitions with di�erent values of s

Suppose we have 2 partitions c1 2 
s1;s1 and c
2 2 
s2;s2

with the number of classes s1 and s2 respectively. We
can compare the probabilities P (sk; ck; �

�k j Z); k = 1; 2
to decide which partition is better. We compute the log

likelihood ratio ln

�
P (s1;c1;�

�1

jZ)

P (s2;c2;�
�2

jZ)

�
.

4. EXPERIMENTAL RESULTS

Multi-sensor target tracking: Multiple sensors send
observations zi = (yi; xi); i = 1; � � � ; N to the central
station [7, 8]. There could be multiple targets in the
atmosphere and their number could be variable at any
given time. The raw data of 120 points is shown in Fig-
ure 1(a). The x-coordinate is related to time. The �gure
shows all the observations collected up to a time t1. We
have not shown time in the graph. As time progresses
there is more data. There is no target label attached to
each observation. It is known apriori that the trajectory
of a target obeys some parametric curve in the X � Y
plane; straight line, parabola etc. For simplicity we con-
sider a straight line. There are also observations caused
purely by noise, the clutter. Note that one trajectory is
completely inside the clutter. Moreover the range of this

trajectory is much less than that of others. The prob-
lem is to identify the number of targets, their tracks and
the clutter points. Intersection of the trajectories in the
�gure indicates intersection in feature space, not in real
time.

Each trajectory is parametrized by a line L(�; ; �)
and obeys the equation

yi = �xi +  +Gauss(0; �); i = 1; � � � ; N (14)

xi are uniformly distributed in the range [0; 10]. The
three line trajectories are L1(0:4; 5; 0:01),L2(�0:3; 9; 0:01),
L3(0:1; 2:1; 0:0025). The clutter is modeled by a Gaus-

sian distribution given by Gauss

��
5
4

�
;

�
0:4 0:2
0:2 1:2

��
.

There are 30 points in each trajectory class as well as the
clutter class, a total of 120 points.
Results with fuzzy clustering
s = 4: The result with s = 4 is given in Figure 1(e).
The clustering captures only one of the three line trajec-
tories. One cluster combines parts of the 2 lines of the
data, before the intersection. The other cluster captures
the other two halves of the line clusters in the data. This
usually happens with most clustering algorithms because
they do not use the available information that the tra-
jectories are straight lines or parabolas etc.
s = 5: The result with s = 5 is given in Figure 1(f). This
clustering is also erroneous. It doesn't identify any line
trajectories correctly. The clusters corresponding to the
clutter and the trajectory within it are subdivided into
two clusters without the trajectory being identi�ed.
Results with Bayesian method
s = 4: All density families pk are multivariate densi-
ties. The best local minimum, shown in Figure 1(b), has
Hs = 638:09. Note that our method captures the four
classes correctly. Even the trajectory within the clutter
is identi�ed correctly.
s = 5: The result associated with best local minimum is
in Figure 1(c). Note the result divides the data of smaller
trajectory and the clutter into 3 clusters, correctly �nd-
ing the clusters of two big lines. Hs = 685:51. Notice
that H5, the H-statistic with s = 5 is much larger than
H4 indicating that the correct value of s is 4.

5. CONCLUSION

We proposed a solution to the problem of unsupervised
classi�cation of multidimensional data based on Bayesian
estimation. The new feature of our method is, we regard
the data partition as a variable to be estimated. We de-
veloped a Bayesian framework to estimate the number
of classes, the class parameters and the data partition
simultaneously. The cluster validation problem was for-
mally addressed. We presented an example with target
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d) Initial for s = 4 e) Clustering, s = 4 f) Clustering, s = 5

Figure 1: Results of applying the Bayesian and fuzzy clustering methods to target tracking data. Data size N = 120
coming from 4 classes. (a,b,c) Classi�cations corresponding to best local minima obtained using Bayesian method
with number of distinct classes s = 3; 4 and 5 respectively. (b) Classi�cation with the lowest minimum amongst best
minima with various values of s. (d) Initial random partition with s = 4 that converges to the result in (b). (e,f)
Classi�cations obtained using Fuzzy clustering with number of classes s = 4 and 5 respectively.

tracking data. Future work will focus on robust regres-
sion, which is a special case of unsupervised classi�cation
with two classes namely inliers and outliers as well as im-
age and video segmentation.

6. REFERENCES

[1] R. O. Duda and P. E. Hart, Pattern Classi�cation

and Scene Analysis. New York: Wiley, 1973.

[2] E. Ruspini, \Numerical Methods for Fuzzy Cluster-
ing," Inf. Sci., Vol. 2, pp. 319{350, 1970.

[3] J. C. Bezdek, Pattern recognition with fuzzy objective

function algorithms. New York: Plenum Press, 1981.

[4] Y. Linde, A. Buzo and R. M. Gray, \An algorithm
for vector quantizer design," IEEE Trans. on Comm.,
COM-28, pp. 84{95, January 1980.

[5] R. L. Kashyap and Srinivas Sista, \Unsupervised
Classi�cation and Choice of Classes: Bayesian Ap-
proach," Technical Report TR-ECE 98-12, School of
Electrical and Computer Engineering, Purdue Uni-
versity, July 1998.

[6] R. L. Kashyap, \Inconsistency of the AIC rule for
estimating the Order of Autoregressive Moving Av-
erage Models," IEEE Trans. Automat. Contr., Vol.
AC-25, No. 5, October 1980.

[7] A. Satish and R. L. Kashyap, \Estimation of Singu-
larities for Intercept Point Forecasting," IEEE Trans.

on Aerospace and Electronic Systems, Vol. 32, No. 4,
pp. 1301{1309, October 1996.

[8] K. Wang, \An assessment of tactical surface-to-air
missile midcourse guidance technology," In Proceed-

ings of the 1991 American Control Conference, Vol.
1, pp. 854{855, 1991.


