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ABSTRACT

A compact language model which incorporates local dependencies
in the form of N-grams and long distance dependencies through
dynamic topic conditional constraints is presented. These con-
straints are integrated using the maximum entropy principle. Is-
sues in assigning a topic to a test utterance are investigated. Recog-
nition results on the Switchboard corpus are presented showing
that with a very small increase in the number of model parameters,
reduction in word error rate and language model perplexity are
achieved over trigram models. Some analysis follows, demonstrat-
ing that the gains are even larger on content-bearing words. The
results are compared with those obtained by interpolating topic-
independent and topic-specific N-gram models. The framework
presented here extends easily to incorporate other forms of sta-
tistical dependencies such as syntactic word-pair relationships or
hierarchical topic constraints.

1. INTRODUCTION

Language modeling is a crucial component of systems that con-
vert from various language modalities, including speech and hand-
writing, to text. Most current algorithms for language modeling,
however, tend to suffer from an acute myopia, basing their pre-
dictions of the next word on only a few immediately preceding
words. When humans are faced with a comparable task they can
easily outperform such models using the richer linguistic informa-
tion available from more complete context. We present a method
for exploiting long-distance dependencies through dynamic mod-
els of the topic of the conversation. We present a compact model
that integrates these dependencies with N-grams in a statistically
sound manner in the maximum entropy (ME) framework.

Several models which combine topic related information with
N-gram models have been studied,e.g., in [1, 4, 3, 8, 9, 10]. The
essential idea comes from the information retrieval (IR) literature
where extensive use is made of weighted term-frequencies to dis-
cern the topic or genre of a document. Most schemes [4, 8, 10] ex-
ploit these differences for language modeling by constructing sep-
arate N-gram models for each individual genre or topic to capture
these differences. Such a construction however results in fragmen-
tation of the training text, for which the usual remedy is to interpo-
late such a topic specific N-gram model with a topic-independent
model constructed using all the available data. An alternative pre-
sented in [3] starts off being similar to this work, but then makes
ad hocchanges to an exponential model with the limited objec-
tive of fast rescoring. The work on read speech in [9] is similar;
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dynamics there are modeled by cache-like notions rather than a
semantic notion of topic. The approach based on latent seman-
tic analysis recently proposed in [1] is a refreshing departure from
these methods and presents perplexities on newspaper text.

In the method presented here the term-frequencies are treated
as topic-dependentsalient features of a corpus, just as overall N-
gram frequencies aretopic-independentsalient features. An ad-
missible model is then required to satisfy constraints that reflect
both the sets of features. The ME principle [5] is used to select a
statistical model which meets all these constraints. This method
has the advantage that only constraints on those term-frequencies
which vary significantly across topics are made topic-dependent
while the others are topic-independent. As a result, the model for
every topic is trained from all the training data, making it possi-
ble to obtain better estimates of the topic-independent components
of the model. A model with a small number of free parameters
follows as a consequence. Finally, though we do not present ex-
perimental results for this, ME features could easily include higher
order N-gram frequencies in documents of a particular topic, syn-
tactic word-pair dependencies, frequencies of word-classes, POS
constraintsetc. It is easy to integrate them in a unified manner
in this framework, as they are simply other features of the corpus
which the model is constrained to match.

Section 2 contains a formulation of this model. Issues in as-
signing a topic to a test utterance are discussed in Section 3. Sec-
tion 4 describes experiments on Switchboard, a corpus of spon-
taneous American English telephone conversations, and provides
analysis of the results. Section 4.5 makes some comparisons be-
tween our method and the method of combining topic specific N-
gram models by linear interpolation.

2. COMBINING N-GRAM AND TOPIC DEPENDENCIES

Let V denote the vocabulary of a speech recognizer. A language
model may be viewed as a familyP (wkjw1; : : : ; wk�1) of con-
ditional probability mass functions (pmfs) over wordswk 2 V
which may appear at thek-th position, based on some equiva-
lence classificationhk of the “history” w1; : : : ; wk�1. For a tri-
gram model,P (wkjw1; : : : ; wk�1) = P3(wkjwk�1; wk�2) and
hk = [wk�1; wk�2].

2.1. The ME Framework

We use the long range historyw1; : : : ; wk�1 to assign a topic tk =
t(w1; : : : ; wk�1) to a conversation. The sufficient statistic of the
history is thus the triplehk = [wk�1; wk�2; tk], and

P (wkjw1; : : : ; wk�1) = PT (wkjwk�1; wk�2; tk): (1)



Intuition suggests that not every word in the vocabulary will have
strong dependence on the topic of the conversation. Estimating a
separate conditional pmf for each[wk�1; wk�2; tk] however frag-
ments the training data and may result in poor estimates for such
words. Additionally, topic related terms may not be seen in every
word-context[wk�1; wk�2]. We therefore seek a model which,
in addition to topic-independent N-gram constraints, meets topic-
dependentmarginalconstraints:

X

tk

PT (wk; tkjwk�1; wk�2) =
#[wk; wk�1; wk�2]

#[wk�1; wk�2]
;

X

wk�1;wk�2

PT (wk; wk�1; wk�2jtk) =
#[wk; tk]

#tk
: (2)

Note that these marginal probabilities are much more reliably esti-
mated than the conditional ones in (1). Unreliable marginal proba-
bilities, e.g., those based on one or two observations, may be com-
pletely left out of the model’s requirements or replaced with their
Good-Turing estimates.

Linear constraints of the form described above define a family
of pmfs and we choose the model in this family which has the
highest entropy, corresponding qualitatively to the least additional
assumptions on (or maximal smoothness of) the model. It is known
that the ME model has an exponential form, with one parameter�

corresponding to each linear constraint placed on the model:

P�(wkjwk�1; wk�2; tk) =

e�(wk) � e�(wk�1;wk) � e�(wk�2;wk�1;wk) � e�(tk ;wk)

Z(�;wk�1; wk�2; tk)
;

whereZ is a suitable normalization constant. The first three nu-
merator terms correspond to standard N-gram constraints, while
the fourth one is a topic-unigram parameter determined by term-
frequencies in a particular topic.

2.2. Computational Issues in ME Model Estimation
The generalized iterative scaling (GIS) algorithm [6] is used to
compute the ME model parameters�. Several challenges, pre-
dominantly associated with the computational and storage needs
of the parameter estimation procedure, must be overcome in order
to successfully implement a ME language model (LM) which in-
corporates topic dependencies with N-gram constraints in a unified
manner.

To overcome the increased complexity from the addition of
topic-dependent unigram constraints, we partition the training cor-
pus based on the topics of the conversation, perform each iteration
of the GIS algorithm for updating� separately on each part, and
correctly combine the updates. This topic-based division of the
corpus reduces the computational complexity by an order of mag-
nitude.

3. TOPIC ASSIGNMENT FOR TEST UTTERANCES

Two issues arise when using a topic-dependent LM for speech
recognition. Since the actual spoken words are not available for
topic assignment, topic assignment must be based on recognizer
hypotheses. We investigate the impact of recognition errors on
this process. It is also well known that the topic of a conversation
may change as the conversation progresses. We examine whether
a topic should be assigned to an entire test conversation, each ut-
terance, or parts of an utterance. We also study if topic assignment

for an utterance should be based only on that utterance, include a
few preceding utterances, or include a few preceding and succeed-
ing utterances. The results are presented in Section 4.3.

4. EXPERIMENTAL RESULTS ON SWITCHBOARD

The training set for all models described here consists of nearly
1200 conversations containing a total of 2.1 million words. Each
conversation is annotated with one of about 70 topics, ranging
from Affirmative Action to Woodworking; this is the topic rec-
ommended to the callers during data collection, though not every
call adheres to its assigned topic. The vocabulary for the task has
22K words and includes all the words in the training and test set.
The performance of various LMs is evaluated on a test set of 19
conversations (38 conversation sides) comprising 18000 words in
over 2400 utterances.

For every test utterance, a list of the 2500-best hypotheses is
generated by an HTK-based recognizer [11] using state-clustered
crossword triphone HMMs with Gaussian mixture output densities
and a back-off bigram LM. The recognition word error rate (WER)
for rescoring these hypotheses and the average perplexity of the
transcriptions of the test set are reported here.

4.1. Baseline Experiments
Table 1 shows the performance of standard back-off trigram mod-
els and an ME model with only N-gram constraints. The mini-
mum count for a bigram to be included in a model is indicated
by B, that for a trigram is by T. We leave out infrequent bigrams

Model (N-gram cutoffs) Perplexity WER

Back-off (no cutoffs) 79.2 43.2%

Back-off (B�4, T�2) 83.4 43.8%
ME (B�4, T�2) 84.7 43.7%

Table 1: Perplexity and WERs of Back-Off Trigram Models and
Maximum Entropy Models with Trigram Constraints.

trigrams from the ME model for rapid training; models with all
N-grams are presented later. The smaller back-off N-gram model
is constructed to calibrate the corresponding ME model with N-
gram constraints. It can be seen that when only N-gram constraints
are used, the ME model essentially replicates the performance of
the corresponding back-off N-gram model. Any improvements (or
degradations) which adding topic-dependent constraints may yield
is thus attributable to those features rather than the ME method.

4.2. Estimation of Topic-Conditional Models
Each conversation side in the training corpus is processed to ob-
tain a representative vector of weighted frequencies of vocabulary
terms excluding stop words, where a stop word is any of a list
of about 700 words with low semantic content which are ignored
by the topic classifier. These vectors are then clustered using a
K-means procedure (K�70), with the initial cluster assignments
being derived from the 70 manually assigned topics of the con-
versations. The resulting cluster assignment is then fixed for each
conversation side for the remainder of the training process.

Words whose unigram frequencyft in a clustert differs sig-
nificantly from its frequencyf in the whole corpus are desig-
nated as topic-related words. We choose all wordsw for which
ft(w) log ft(w)

f(w)
� 3 to be a word related to topict. There are

roughly 300 such words for every topic cluster, about 16K such



words in the 22K vocabulary, and they constitute about 8% of the
2.1 million training tokens. ME models are trained with the con-
straints of the kind (2) on these words in addition to the N-gram
constraints.

4.3. Topic Assignment During Testing

To use a topic-dependent model for rescoring, a topic must be
assigned1 to test utterances. We investigate four options for this
assignment: (i) manual assignment of topics to the conversation,
automatic topic assignment2 based on (ii) the reference transcrip-
tions or (iii) the 10-best hypotheses generated by the first recogni-
tion pass, and (iv) assignment by anoracleto minimize perplexity
(or WER). The results, presented in Table 2, clearly indicate that

Source of Text for Perplexity WER
Topic Classification

None (Baseline) 84.7 43.7%
Manual Assignment 76.5 42.9%
Ref. Transcriptions 77.1 43.0%
10-Best Hypotheses 77.4 43.1%
Oracle (optimal) 75.8 42.7%

Table 2: Topic Assignment Based on Erroneous Recognizer Hy-
potheses Causes Little Degradation in Performance.

even with a WER of over 40%, there is only a small loss in per-
plexity and a negligible loss in WER when the topic assignment
is based on recognizer hypotheses instead of the correct transcrip-
tions. Comparisons with the oracle indicate that there is little room
for further improvement.

We have also investigated topic assignment at several granular-
ities and found that the best recognition performance is achieved
by assigning a topic to each utterance based on the 10-best hy-
potheses of the current and the three preceding utterances. These
results are presented in Table 3. Note that utterance-level topic as-

Source of Text for Perplexity WER
Topic Classification

None (Baseline) 84.7 43.7%
Ref. Transcriptions 75.5 42.8%
10-Best Hypotheses 76.5 42.9%
Oracle (optimal) 71.2 40.1%

Table 3: Dynamic Topic Assignment for Individual Utterances
Based on the Current and Three Preceding Utterances.

signment of Table 3 is more effective than the conversation-level
assignment (Table 2). Adding topic-dependent constraintsreduces
absolute WER by 0.8% and relative perplexity by 9.7%.

To gain insight into improved performance from utterance-
level topic assignment, we examine agreement between topics as-
signed at the two levels. As seen in Table 4, 8 out of 10 utter-
ances prefer the topic-independent model and are filler utterances,
probably serving vital discourse functions (e.g. acknowledgments,

1A hard decision is made by assigning the closest matching topic in the
results presented here, though the formalism extends easily to soft topic de-
cisions. We employ a standard cosine similarity measure commonly used
in the IR community [1, 7] to assign a topic to test sentences.

2The null topic, which defaults to a topic-independent baseline model,
is available as one of the choices to the topic classifier.

Source of Agreement of Utt. Level Topic When
Text for Topic Conv. & Utt. Disagreeing With Conv.
Classification Level Topics Other Topic No Topic

Ref. Trans. 12.7% 7.1% 80.3%
10-Best Hyps. 9.9% 7.0% 83.1%

Table 4: Topic Dynamics Viewed Through (Dis)agreement of
Utterance- and Conversation-Level Topic Assignment.

back-channel responses). Of the remaining utterances, a majority
are closest to the topic which was assigned at the conversation-
level. While a large fraction are closer to a topic other than the one
preferred at the conversation-level, this is not an equally remark-
able result as, in many of these cases, the topic assigned at the
conversation-level is a close second or the two topics are similar.

4.4. Analysis of Recognition Performance
To see if we indeed improve the model where we aim to improve
it, the vocabulary is divided into two sets: all those words which
have topic-conditional unigram constraints for any of the topics,
and the others. Each word token in the reference transcription is
then marked as belonging to one of the two sets and their perplex-
ity is calculated separately. The words in the recognizer’s output
are also similarly marked, and each recognition error is assigned to
one of the two sets, separating the WER over the two sets of words.
About 7% of the tokens in the test set have topic-dependent con-
straints. Table 5 shows a breakdown of the results over the set of

Language Model Topic Words Nontopic Words
(N-gram cutoffs) Ppl WER Ppl WER

ME (B�4, T� 2) 3936 42.8% 63.9 43.8%
ME-Topic (B�4, T� 2) 354 40.5% 68.2 43.1%

Table 5: Analysis of Performance Gains From Topic-Dep. LM.

topic-dependent and -independent words for ME models with and
without topic-dependent constraints. We also divide the vocabu-
lary simply into content-bearing words and stop words (as defined
earlier). Under this partition, nearly 25% of tokens in the test set
are content-bearing and the remainder are stop words. Table 6
presents the performance gains analyzed for this partition.

Language Model Content Words Stop Words
(N-gram cutoffs) Ppl WER Ppl WER

ME (B�4, T� 2) 225 43.4% 58.8 43.8%
ME-Topic (B�4, T� 2) 177 41.9% 57.2 43.2%

Table 6: Performance Improvement on Content-Bearing Words.

It is clear from Tables 5 and 6 that the gain in perplexity comes
predominantly from content-bearing words, and the1.5% improve-
ment in WER on content-bearing wordsis greater than the overall
WER improvement; an important consideration for end users.

4.5. ME v/s Interpolated Topic N-Grams
Compared to the back-off trigram model which has about 250K
parameters, the topic-conditional ME models introduce only about
16K additional parameters which modify probabilities of a few
hundred words in the context of each topic. An alternative to this
modeling approach is to partition the training data, build separate



N-gram models for each topic and, since each topic N-gram is
trained on a much smaller dataset, interpolate this topic specific
model with a topic-independent model trained on all the data to
obtain a smooth topic-dependent model. This is comparable to the
approach described, e.g., in [4, 8, 10].

We construct back-off unigram, bigram and trigram models
specific to each topic using the partitioning of the 2.1 million word
corpus used for the ME models as described in Section 4.2. We
interpolate each topic-specific N-gram with the topic-independent
trigram model to obtain smooth topic-dependent N-gram models.
Usually, one would tune the interpolation coefficient on some held
out set. In this case, however, we (cheat and) choose the interpo-
lation weight to minimize the perplexity of the test set under each
interpolated model. Table 7 shows the recognition performance of
the interpolated models. The topic for each test utterance for the
interpolated model is the same as the one used for the ME topic
model.

Model (N-gram cutoff) #Params Perplexity WER

Back-Off (B�4, T�2) 253K 83.4 43.8%

Back-Off + Topic 1-gram +70�11K 83.0 43.8%
Back-Off + Topic 2-gram +70�26K 78.8 43.2%
Back-Off + Topic 3-gram +70�55K 77.6 43.0%

ME-Topic (B�4, T� 2) +16K 76.5 42.9%

Table 7: Comparison with 70 Interpolated Topic N-Gram Models.

It may thus be argued that the ME approach permits us to com-
bine via unigram constraints as much effective information as one
would get by interpolating topic specific trigram models. This, we
argue, is due to the systematic integration of topic-dependent and
topic-independent constraints in our model.

5. TOPIC-DEPENDENT ME MODELS INCLUDING
N-GRAMS WITH LOWER COUNTS

For rapid turnaround in the experiments described in the preceding
section we compare ME and ME-Topic models which do not im-
pose constraints on low-count bigrams (B<4) and trigrams (T<2).
We also implement topic-dependent ME models with constraints
on less frequent N-grams so as to compare them with the best
back-off models. The performance of these models is shown in
Table 8. It is clear that the topic conditioning reduces (absolute)

Model (N-gram cutoffs) Perplexity WER

Back-off (no cutoffs) 79.2 43.2%

Back-off (B�1, T�2) 78.8 43.2%
ME (B�1, T�2) 78.9 43.1%
ME-Topic (B�1, T� 2) 73.5 42.7%

Back-off (B�2, T�2) 80.1 43.3%
ME (B�2, T�2) 80.3 43.1%
ME-Topic (B�2, T� 2) 74.3 42.6%

Table 8: Final Comparison of N-Gram and Topic-Dependent LMs.

WER by about the same amount in each case over the correspond-
ing back-off model without topic constraints, and topic-dependent
ME modelsreduce absolute WER by 0.6% and relative perplexity
by 7%over the best trigram model. The improvements on content-
bearing words is about twice as much (c.f. Section 4.4).

6. CONCLUDING REMARKS

We have described a ME language model which combines topic
dependencies and N-gram constraints in a unified fashion and pro-
vides small but significant performance gains at the cost of few
additional parameters. The performance improvement on content-
bearing words is even more significant. A small number of topic-
dependent unigrams are able to provide this improvement because
the information they provide iscomplementarybut well integrated
with the modeling ability of N-grams.

Since the framework itself extends easily to combining other
dependencies, our current efforts are in the direction of exploiting
syntactic structure obtained from a left to right partial parse of the
utterance as described in [2]. The syntactic constraints will pro-
vide information which complements both N-grams and topic de-
pendencies. Additional constraints such as word class frequencies
based on parts of speech, hierarchical topic dependenciesetc. are
also under consideration in order to further extend the model and
derive benefits from the flexibility offered by the ME framework.
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