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ABSTRACT

We address the problem of estimating the envelope of a real-
valued signal,s(t), that is observed for a duration of T seconds.
We models(t) using a Fourier series, by considering periodic
extensions of the signal. By using an analog of the autocorrela-
tion method of linear prediction on the Fourier coefficients ofs(t),
the envelope of the signal is estimated without explicitly comput-
ing the analytic signal through Hilbert transformation. Using this
method the envelope of a non-stationary signal can be computed
by processing the signal through a slidingT -second window.

1. INTRODUCTION

Instantaneous attributes of a signal, namely its envelope and in-
stantaneous frequency (IF) are often used to characterize a band-
pass signal [1]. They are uniquely defined for analytic signals [2].
The analytic signal [2, 3] corresponding to a real signal,s(t), is
defined ass(t)� jŝ(t) whereŝ(t) is the Hilbert transform ofs(t),
i.e. ŝ(t) = 1=�

R1
�1

s(�)
t��

d� [2]. If we rewrite s(t) � jŝ(t) as

a(t)e�j�(t), thena(t) is the envelope and� 1
2�

d�(t)
dt

is the IF. The
spectrum of an analytic signal vanishes for either positive or neg-
ative frequencies. These special signals play fundamental roles in
many applications such as narrowband communications and band-
pass sampling [4].

To form the analytic signal one has to compute the Hilbert
transform of the real-valued signals(t). This leads to a number
of difficulties. For instance, the signals(t), in practice, is known
only for a finite, and often a short duration. Hence, any physically
realizable Hilbert transformer will introduce significant transients
in ŝ(t). This alters the formed analytic signal’s characteristics.
Thus, if possible, it is desirable to avoid forming the analytic sig-
nal before one computes the envelope or the IF.

In this paper, we propose an approach to estimating the enve-
lope of a real-valued signal without explicitly computing its Hilbert
transform. We exploit the analogy between the spectral envelope
of a sequence and the envelope of a signal. We borrow a well
known method from spectral analysis used for modeling the spec-
tral envelope of a sequence and adapt it for modeling the envelope
of a signal. The proposed method is an extension of the Linear
Prediction in Spectral Domain (LPSD) algorithm that we proposed
recently [5–7].
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2. MODELING THE SPECTRAL ENVELOPE OF A
SYMMETRIC SEQUENCE

Consider a sequencex(n) consisting of2N +1 complex valued
samples denoted byx(�N); :; x(0); :; x(N): X(z) =

PN

�N x(n)z�n.
Let 1; b(1); b(2); ::b(L) represent the coefficients of an FIR filter
with system functionB(z). Let F (z) = X(z)B(z). F (z) =PN+L

n=�N f(n)z�n. In the autocorrelation method of linear pre-
diction [8, 9], the filter coefficientsb(1) to b(L) are determined by
minimizing the prediction error given by

N+LX
n=�N

jf(n)j2 =
1

2�

Z �

��

jF (ej!)j2d! (1)

=
1

2�

Z �

��

jX(ej!)B(ej!)j2d! (2)

The above error is minimized by finding theb(l) that satisfy the
following simultaneous linear equations

LX
l=1

b(l)r(i� l) = �r(i) 1 � i � L; (3)

wherer(i) =
PN�jij

n=�N x�(n)x(n + i) andr(i) = r�(�i). Min-
imizing the prediction error given in Eq.(1) amounts to flattening
the spectral envelope of the sequencef(n). Hence,1=jB(ej!)j
provides a smooth fit to the envelope of the spectrum ofx(n). The
closeness of the fit depends on the order of the filterB(z). It is
well known thatB(z) is a minimum-phase filter [8, 9].B(z) is
known as the Inverse Filter or Prediction-Error Filter. The above
method is often used in speech processing (see figure 3 in Ref.[9],
for example) to model the spectral envelope of speech signals over
contiguous blocks of data. We wish to adapt this method to obtain
the envelope of a real-valued signal.

Let us assume that the sequence,x(n), has conjugate symme-
try. That isx(n) = x�(�n). ThusX(ej!) is real-valued. Let us
split the sequencex(n) into three partsx1(n), x2(n) andx3(n).
x1(n) corresponds to the samplesx(�N); x(�N+1); :::; x(�K),
x2(n) corresponds tox(�K + 1); x(�K + 2)::; x(0); :::x(K �
2); x(K�1), andx3(n) corresponds to the samplesx(K); x(K+
1); :::; x(N). K is some positive integer less than N. Clearly,x(n) =
x1(n) + x2(n) + x3(n). Note thatx1(n) = x�3(�n). Using the
above notation we may write the prediction error as follows.

f(n) = x(n) � b(n) =

3X
k=1

xk(n) � b(n) (4)



� denotes linear convolution. Let us further assume that the se-
quencex2(n) is identically zero. Thenf(n) = x1(n) � b(n) +
x3(n) � b(n). If 2K � 1 � L, then the results of the two convo-
lutionsf1(n) = x1(n) � b(n) andf3(n) = x3(n) � b(n) do not
overlap. Hence the prediction error may be written as follows.

N+LX
n=�N

jf(n)j2 =

�K+LX
n=�N

jf1(n)j
2 +

N+LX
n=K

jf3(n)j
2 (5)

= 1=2�

Z �

��

jX1(e
j!)B(ej!)j2d! (6)

+1=2�

Z �

��

jX3(e
j!)B(ej!)j2d!

Sincex1(n) = x�3(�n), it follows thatX1(e
j!) = X�

3 (e
j!).

Hence, the two terms in the above are identical. This is true even
if N = 1. Therefore, the inverse filter coefficients and conse-
quently the spectral envelope may be obtained by minimizing ei-
ther one of the two terms. This implies that, for a sequence with
conjugate symmetry or antisymmetry, with sufficient number of
zeros in the middle of the sequence, we can obtain a fit to the spec-
tral envelope from either the causal or the anticausal part of the
sequence. This observation, although of not much value in this
domain, is very useful in obtaining the estimate of the envelope
and IF of a signal without computing its analytic version. We shall
demonstrate this in the next section.

3. ENVELOPE OF REAL-VALUED SIGNAL

Consider a real-valued signal,s(t), over an interval of0 to T
seconds.s(t) may be represented over this interval by2N + 1
Fourier coefficients for sufficiently largeN . That is

s(t) =
NX

k=�N

ake
jk
t: (7)


 = 2�=T . Sinces(t) is real-valueda�k = a�k. Let s(t) be
such that the Fourier coefficientsa�K+1::; a0; ::; aK�1 are equal
to zero for someK < N . That is,s(t) is a band-pass signal.
Clearly, the Fourier coefficients,ak, are analogous to the conjugate-
symmetric sequence,x(n), considered in the previous section. Ex-
tending the analogy further, let us define an error signale(t) over
0 to T seconds as follows.

e(t) = s(t)h(t); (8)

whereh(t) = 1 +
PL

l=1 hle
jl
t. Analogous to the inverse filter

B(z), defined in the previous section, we may callh(t) as the
‘Inverse Signal’. The goal is to find an inverse signalh(t) such
that the envelope of the error signale(t) is flattened. With this
in mind, we shall minimize the energy in the error signale(t),
i.e.,

R T
0
je(t)j2dt by choosing the coefficients,hl. Plugging in the

expression fors(t) from Eq.(7) into the error-energy expression
we get

Z T

0

je(t)j2dt =

Z T

0

js(t)h(t)j2dt (9)

= T

N+LX
n=�N

jgnj
2 (10)

wheregn = an � hn. h0 = 1. The similarity between the above
expression and Eq.(1) is obvious. Again, the inverse signal co-
efficients,hl, can be determined by solving the linear equations
analogous to the one in Eq.(3), whereb(l) is replaced byhl, and
an is substituted forx(n). Analogous to the spectral envelope in
the previous section, the signal envelope is given by1=jh(t)j.

Since the Fourier coefficientsa�K+1 to aK�1 are all assumed
to be zero, the expression for the error-energy can be written as a
sum of two terms, ifL � 2K � 1.

Z T

0

je(t)j2dt = T
�K+LX
n=�N

jgnj
2 + T

N+LX
n=K

jgnj
2 (11)

=

Z T

0

j(s(t)� jŝ(t))h(t)j2dt (12)

+

Z T

0

j(s(t) + jŝ(t))h(t)j2dt (13)

Since the analytic (s(t) + jŝ(t)) and antianalytic (s(t) � jŝ(t))
signals are complex conjugates of each other, the two terms in
the above expression are equal. Thus the inverse signal obtained
by minimizing any one of the terms in the above expression is
equal to theh(t) obtained by minimizing the error in Eq.(9) (using
the real-valueds(t)). Thus1=jh(t)j gives the Hilbert envelope of
the analytic (also antianalytic) signal, although it is computed di-
rectly from the real-valueds(t). However, for this to be true the
real-valued signals(t) must have sufficient number of zero-valued
Fourier coefficients in the low frequency region.

Minimize
over hl

R T
0
je(t)j2dt

IS

h(t)

s(t) e(t)

h(t)

Figure 1: Envelope Estimator: h(t) = 1 +
PL

l=1 hle
jl
t:

1=jh(t)j gives the estimate of the envelope.s(t) is a real-valued
signal.IS stands for Inverse Signal generator.

In the above, since linear prediction is performed on the Fourier
coefficients of the signals(t), instead of the signal samples, we
called this method, Linear Prediction in the Spectral Domain or
LPSD [6]. If we denotes(t)+jŝ(t) bya(t)ej�(t), clearlyjh(t)j �
1

a(t)
= e�ln(a(t)). Further, sinceh(t) is a minimum-phase signal

[10], its log-envelope and phase are related by Hilbert transform.
Thereforeh(t) must be such that

h(t) � e� lna(t)�j\lna(t): (14)

Recall that the hat denotes the Hilbert transform. Thus the error
signale(t) may be written as

e(t) = s(t)h(t) �
1

2
ej(�(t)�
\lna(t)) +

1

2
ej(��(t)�

\lna(t)) (15)

It can be shown thatd(�(t)�
\lna(t))

dt
is always positive [6]. It is

called the positive instantaneous frequency (PIF) ofs(t).



4. SIMULATION RESULTS

In this section we present an algorithm for computing the esti-
mate of the envelope of the real signals(t). The algorithm amounts
to performing linear prediction on the discrete Fourier transform
(DFT) values of the signal samples. Lets(n) (n = 0; 1; : : : ; Q),
denote the samples ofs(t). Let 
 = 2�

Q+1
be the assumed fun-

damental frequency. By replacingh(t) ande(t) in Eq. 8 by their
respective sampled versions, we have

e(n) = s(n) +
LX
l=1

hls(n)e
jl
n ; (16)

which can be further expressed in matrix notation as0
BBB@

s(0) s(0) � � � s(0)
ej
s(1) ej2
s(1) � � � ejL
s(1)

...
...

. . .
...

ejQ
s(Q) ej2Q
s(Q) � � � ejLQ
s(Q)

1
CCCA

0
BBB@

h1
h2
...
hL

1
CCCA

+

0
BBB@

s(0)
s(1)

...
s(Q)

1
CCCA =

0
BBB@

e(0)
e(1)

...
e(Q)

1
CCCA : (17)

If we let s, H, h and e denote the vectors/matrices from left
to right in Eq. 17, then the solution vector,h, that minimizes

e
y
e =

QX
n=0

je(n)j2 is given byh = �
�
H
y
H
��1

H
y
s. y stands

for conjugate-transpose. The solution depends only on the magni-
tude ofs[n]. h[n] is reconstructed by substituting the elements of
h in h(n) = 1 +

PL

l=1 hle
jl
n. The envelope estimate is1

jh(n)j
.

Some simulation results are provided in Figure 2. A real signal
s(n) shown in Fig.2(b) was synthesized using36 Fourier coeffi-
cients whose magnitudes are shown in Fig.2(a). Their phase angles
were chosen randomly. The envelope of the signal was estimated
using the above algorithm for two different values ofL. Fig.2(c)
and Fig.2(d) display the envelope estimates against the true enve-
lope obtained from the analytic signal. The higher the value of
L, closer is the approximation. However, there must be sufficient
number of zero Fourier coefficients in the low-frequency region.
The method tends to match the peaks of the envelope much more
precisely than the valleys. This behavior is well known in spec-
tral envelope modeling [9]. Although, in this example exactly one
period of the signal was used for modeling, this is not necessary.

5. CONCLUSION

Inspired by spectral envelope modeling, we have developed an
algorithm to estimate the envelope of a real-valued signal with-
out computing the signal’s Hilbert transform. It is necessary that
the signal have negligible energy in the low-frequency region. We
are currently developing an algorithm to compute the envelope and
positive-instantaneous frequency of real-valued signals without re-
sorting to any complex-valued computations.
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Figure 2: Fig.2(a) shows the magnitude of the Fourier coefficients
used to generate the real signals(t) shown in Fig.2(b). In Fig-
ures 2(c) and 2(d) the true envelope of the analytic signal (shown
in solid line) is compared with the estimates given by1=jh(t)j
shown in dotted lines. The envelope estimates shown in Fig.2(c)
and Fig.2(d) correspond toL = 12 and25, respectively.


