
PHYSICS-BASED CLASSIFICATION OF TARGETS IN
SAR IMAGERY USING SUBAPERTURE SEQUENCES

Lawrence Carin, Gary Ybarra, Priya Bharadwaj, and Paul Runkle

Department of Electrical and Computer Engineering
Duke University

Durham, NC, 27708
lcarin@ee.duke.edu, runkle@ee.duke.edu

ABSTRACT
It is well known that radar scattering from an illuminated object
is often highly aspect dependent.  We have developed a multi-
aspect target classification technique for SAR imagery that
incorporates matching-pursuits feature extraction from each of a
sequence of subaperture images, in conjunction with a hidden
Markov model that explicitly incorporates the target-sensor
motion represented by the image sequence.  This approach
exploits the aspect dependence of the signal features to facilitate
maximum-likelihood identification. We consider SAR imagery
containing targets concealed by foliage.

1. INTRODUCTION

The use of low-frequency, ultra wideband (UWB) imaging radar
has recently been of interest for the detection and classification
of tactical targets concealed by foliage [1,2].  The identification
of such targets may be significantly enhanced by accounting for
their anisotropic scattering behavior, i.e. the characteristics of the
scattered signal may be highly variable with respect to the target-
sensor orientation. An example of an object exhibiting such
behavior is a flat plate. When the plate is illuminated from a
direction close to normal incidence, or “broadside”, a significant
proportion of the incident energy is returned to the sensor.
However, when illuminated away from normal incidence, the
backscattered energy is significantly attenuated.  When the radar
is operating in a SAR mode, this anisotropic behavior will be
manifested as a “flash” as the aperture passes the plate’s
broadside. In this paper we present an approach which exploits
such anisotropic scattering to improve the detection and
classification of tactical targets.

The present multi-aspect classification system is summarized in
Figure 1. A SAR image of an unknown target at an unknown
orientation is decomposed into a sequence of subaperture images
corresponding to a sequence of target-sensor orientations.
Recently [3] it has been shown that such subaperture images may
be generated by applying directional filterbanks directly to the
post-processed SAR image. A matching-pursuits [4] feature
extraction is performed on each of the subaperture images to
parameterize the salient directional information. Besides the
directionally varying energy from broadside flashes, there may be
other features in the scattered signal, such as aspect dependent
resonances that may be exploited to improve the classification of

tactical targets. This sequence of feature vectors may be thought
of as a statistical sample of the directionally varying
characteristics of the target. A framework which is well suited for
describing such stochastic sequences is a hidden Markov model
[5]. The sequence of multi-aspect feature vectors is used to train
a continuous hidden Markov model for each target class.
Maximum-likelihood target identification is then performed by
associating a target under test with that model yielding the
greatest conditional likelihood of the observation. With sufficient
training from either physical models [6] or SAR imagery, this
approach of combining physics-based features with the target-
sensor geometry may provide significant gains in classification
performance.

Figure 1. Block diagram of multi-aspect HMM SAR
classification.

This paper is structured as follows. First, the directional filters
used to create the subaperture images are reviewed. In Section 3
we discuss the matching-pursuits feature extraction applied to
each image in the subaperture sequence. The incorporation of the
target-sensor geometry into the hidden Markov model is
addressed in Section 4. Results on the application of this



classification approach applied to SAR imagery containing
tactical vehicles and clutter are presented in Section 5.

2. SUBAPERTURE IMAGE SEQUENCES
The exploitation of directionally dependent radar scattering for
target identification requires that the target be illuminated by the
radar over a sufficiently wide angle such that the scattering
anisotropy may be detected. Fortunately, wide-angle SARs can
illuminate targets over an aspect angle of °90 , or even greater. It
has recently been demonstrated [3] that a directional filter may
be directly applied to the post-processed image to generate an
image formed over any desired SAR subaperture. Although these
filters were derived from first principles of backprojection in the
spatial domain, their application may be more easily visualized in
the spatial frequency domain.

Figure 2a) illustrates a SAR subaperture over an interval φ
centered on look direction θ. The equivalent directional filter
response is shown in Figure 2b). In the spatial frequency domain,
the ideal directional filters form a segment of an annulus, where
the orientation and angular span of the segment are determined
by the look angle and subaperture interval, respectively.
Moreover, temporal filtering may be embedded in the directional
filter by varying the inner and outer radii of the annulus, which
are directly proportional to the lower and upper cutoff
frequencies of the filter. A sequence of N

Figure 2. a) Generation of subaperture image with
effective aperture φ from look direction θ relative to
target. b) Response of the (ideal) equivalent directional
filter in the spatial frequency domain, where B is the
system bandwidth.
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, may then be generated by

filtering a post-processed image with a bank of directional filters,
each designed with the appropriate direction θ.

3. MATCHING PURSUITS
      FEATURE EXTRACTION

Given a sequence of subaperture images, we perform feature
extraction on each image using the method of matching pursuits
[4], a technique which iteratively decomposes any signal into a
linear expansion of functions De∈ , where D is referred to as a
“dictionary.” The elements of the dictionary are designed to
reflect the underlying structure present in the scattered signal,
yielding a compact representation [7].

The matching pursuits decomposition is conducted as follows.
For a given (subaperture) image,

n
Iθ , the data is projected onto

each element of the dictionary, and that element, e1, for which
the projection energy |<

n
Iθ , e1>| is maximized is selected. The

image decomposition for the first iteration is then given by
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defined.  After Ni iterations, the decomposition is given by
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where R0 / I.  After a sufficient number of iterations, the features
may be defined as the parameters (or subset thereof) of the
selected ei, which represent the characteristics of scattering
centers in the image. Such features may include amplitude,
spatial extent in downrange and crossrange, and the frequency of
resonances present in the imagery.  Since each subaperture image
is parameterized by a set of features, y, the sequence of
subaperture images is described as a sequence of feature vectors
Y = y1,…,yN. For the current application, the dictionary was
developed using two-dimensional separable functions. Gabor
functions [8] were utilized in the downrange direction, and a
Hamming window, WH, was employed in the crossrange.  The
dictionary was thus parameterized by the nominal scattering
center location (x0,r0), center frequency (k), downrange extent (j),
and crossrange extent (l):
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Such a family of functions accounts for scattered signals
representative of both wavefronts (small time support and large
frequency support), and resonances (large time support and small
frequency support). Appropriate crossrange window sizes may be
determined by the resolution resulting from imaging over the
SAR subaperture φ.

4. HMM DESIGN

Classification of targets exhibiting anisotropic scattering may be
facilitated through the design of directionally dependent signal
models. Wave scattering from most targets may be characterized



by angular sectors over which the scattering is relatively isotropic
within each sector.  Here we refer to such sectors as “states”,
with the number of states and the extent of each being
characteristic of a given target. Generally, highly anisotropic
targets will be described by several states encompassing the
target, while simple targets, such as those exhibiting cylindrical
symmetry, may be described using a single state. For a given
target, Tm, the feature statistics within any given state, Sk, are
considered to be stationary, and are described by the conditional
density function P(y | Si, Tm), which, in practice, is estimated
from training data.

In this multi-aspect classification approach, the N subaperture
images sample N discrete (but not necessarily distinct) states,
S = S1,…,SN, characteristic of the target under interrogation.
Since the states for a given target are fixed (and are determined
by the scattering physics), the probability of transitioning from
one state to another between consecutive subaperture images is
dictated by the spatial extent of the state and the relative change
in the target-sensor orientation.  If we assume that the probability
of making a state transition is governed only by the current state
occupied, then the state sequence, S, may be described as a
discrete Markov chain [9]. Since the orientation of the target is
assumed to be unknown, it follows that the state sequence S is
unknown, and its identity may only be established through
observation of the feature vector sequence Y.  We use HMMs [5]
to model the statistics of the observed sequence Y, which are
driven by the underlying state sequence S.

The use of discrete HMMs for single feature “flash” detection
has been previously investigated [10]. Here we employ
continuous mixture densities [11] to represent
P(y | Sk, Tm),  which overcomes common problems associated
with quantization noise and limited training data. Furthermore,
by using features associated with multiple physical attributes of
the scattered signal, the anisotropy of the joint statistics of such
features may be employed in target identification across several
states, rather than relying solely on detecting an amplitude flash
in a single state.

A continuous K-state HMM is represented by an initial state
distribution K-vector, p, and K x K state-transition matrix, A,
with element aij being the probability of transitioning from state i
to state j. The model also incorporates the observation densities
for each state, P(y | Sk, Tm).  Assume that the associated target
may be represented by contiguous states with consecutive
angular support ψ1,…,ψK. If the target orientation is uniformly
distributed, then the probability that the first subaperture image
was observed in state k is simply the proportion of that state’s

angular extent to the extent of all states, πk = ψk/Σψk.  Similarly,
geometric considerations may be employed to determine the state
transition probabilities, A.  For example, it is easily shown that if
the angular target-sensor motion between consecutive
subaperture images is smaller than the smallest state extent, ψmin,
then transitions may only be made between adjacent states,
resulting in non-zero elements of A only along the diagonal and
sub-diagonal, given that the direction of motion (left-to right or
right-to left) is known.

Given an observed sequence, Y, and a set of target-specific
HMMs, M1,…,MM, the task of the HMM classifier is to

determine which model was most likely to have produced Y, i.e.
we maximize P(Y | Mm) over m. For a particular state sequence,
S1,…SN, the conditional probability of observing Y, is given by

P(Y | S,M) = P(y1 | S1,M) P(y2 | S2,M) … P(yN | SN,M)      (3)

Therefore, the desired conditional likelihood may be computed
by summing over all possible state sequences:
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with the conditional state sequence given by the product of the
transition probabilities with the initial state probability

NSNSSSS aaP
1211

...)|( −π=MS                  (5)

The quantity in (4) may be efficiently computed via the forward-
backward algorithm [12].  Alternatively, we employ the Viterbi
algorithm [13] to estimate the maximum likelihood state
sequence, which is subsequently used to calculate the likelihood
of Y. A Viterbi-based re-estimation procedure is used to optimize
the model parameters according to training data.

5. APPLICATION TO SAR IMAGERY

In this section we present results from applying the multi-aspect
HMM classification on data collected with the ARL BoomSAR
[1], which operates in the frequency range 40-1200 MHz. The
post-processed images were formed using standard
backprojection methods over a 90E integration angle. Image
“chips” containing tactical targets were selected and directionally
filtered to generate a sequence of subaperture images. An
example image chip of a target is shown in Figure 3a).

For this investigation the extent of the subaperture was fixed at
φ = 6E with a look angle, θ, varying from -42E to 42E in 3E
increments.  Figure 3b) illustrates subaperture images generated
for three look directions corresponding to a left, center and right
aspect.  Three iterations of the matching pursuits decomposition
were performed on each of the subaperture images using the 2D
dictionary described in Section 3, with the reconstruction
associated with each subaperture shown in Figure 3b).  For this
study, three target chips were selected along with two clutter
chips containing trees.

The hidden Markov models were trained using features from 10
subaperture images, with each sequence spanning 27E.  Testing
was performed using features extracted from a sequence of 10
subaperture images which were offset from the training
subapertures by 1 degree, such that the training and testing data
would be distinct. The discrimination power of the target models
are shown in Figure 4, where the likelihood of observing feature
sequences from each of the three targets and two clutter regions
is computed from the model corresponding to target 1.  It is seen
that for all sequences of length 10 with initial subaperture look
from  -41E to  13E, that the likelihood of target 1 was greatest.
Similar results were observed for HMMs designed for other
targets.  This performance is indicative of the promise that multi-
aspect classification of SAR imagery holds.

To fully realize the potential of this target identification
approach, electromagnetic scattering models of tactical targets



are being developed [6], enabling the scattered signal to be
characterized at any orientation in the absence of system noise,
and confounding clutter. Such models provide scattering data
from all target states, which is difficult to ensure with measured
data.  Moreover, a complete state description will allow us to
develop HMMs over subaperture sequences spanning the entire
SAR aperture of 90E, enabling maximum exploitation of any
anisotropy exhibited by the features.  We are also investigating
other methods of feature extraction, including the
implementation of sub-bands within the directional filters which
may be used to develop spectral as well as directionally
dependent features.
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Figure 3. a) Image chip of target b) Top row -
subaperture images: left (-24E), center (0E), right (24E);
Bottom row – matching pursuits representation.
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Figure 4. Inverse log-likelihood of feature sequences
evaluated using HMM corresponding to target 1.
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