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ABSTRACT

This paper proposes a new lattice filter structure that has
the following properties. When thefilter is Linear Time In-
variant (LTI), it is equivalent to the celebrated Gray Markel
Lattice. When the lattice parameters vary with time it sus-
tains arbitrary rate of time variations without sacrificing a
prescribed degree of stability, provided that the lattice co-
efficients are magnitude bounded in a region where all LTI
lattices have the same degree of stability. We also show
that the resulting LTV lattice obeys an energy contraction
condition. This structure thus generalizes the normalized
Gray-Markel lattice which has similar properties but only
with respect to stability as opposed to relative stability.

1. INTRODUCTION

Consider the Linear Time Invariant (LTI) normalized Gray-
Markel lattice of fig. 1 with

{pisqi,rivsit =A{ai,di,dj,—a; 1,1 <i<n (1)

and
CAL",' = v/ 1-— |a'l-|2. (2)

It is known that this lattice is stable iff for all ¢,
|a,-| <1 (3)

In addition under these conditions it is aso All Pass, [1].
This lattice realization has the following added attractive
property. If one permits the lattice coefficients «; to vary
with time, aswould be the case for example in adaptive im-
plementations, then the resulting linear time varying (LTV)
normalized lattice remainsexponentially asymptotically sta-
ble (eas) aslong asfor arbitrary 1 > ¢ > 0, [3],
lai (k)| <1—€ 1<i<n. 4
The remarkable fact about this result is that as long as
the reflection coefficientsstrictly obey the conditionsfor LTI
stability arbitrary rates of time variations can be sustained
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without theloss of exponential stablility. Further under these
conditionsthe time varying latticeisalso all pass, i.e. for al
square summable inputs the input and output energies are

equal.
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Figure 1: A Lattice structure

In practice robustness dictates that mere exponential
asymptotic stability should be replaced by stability with
amargin. Thus for example one would like all zero input
state trajectories to decay at an exponential rate no slower
than 1/p* for some p > 1. In such a case we call the filter
p-stable.

More precisely, we will call alinear time varying (LTV)
systemwith scalar input « (%), scalar output y(k), n x 1 state



x(k) and a state variable realization (SVR)

wz(k+1) = A(k)z(k)+ bk)u(k) (5)
y(k) = c(k)a(k)+ d(k)u(k) (6)

p-stable if there exist constants 3; > 0, 0 < 3, < 1 such
that with zero input, the state obeysfor all & andinitial time
ko

PR () < Bl (ko) |85~ %

where || - || denotes the standard 2-norm. If p is 1, we
simply call the system eas, henceforth stable. Observe
LTI p-stable systems have @l poles inside a circle of ra-
dius 1/p. Henceforth we will say that this system has an
SVR {A(k),b(k), c(k). d(k)}.

Until recently the clean characterization of the p-stability
of even the LTI Gray-Markel lattice was unavailable. In a
recent paper, [6] we provide the following result. Given a
p > 1, wegivenecessary and sufficient conditionson agiven
set of 0 < 6; < 1 to be such that the all LTI Gray-Markel
lattices with coefficients obeying

lai] < 8 1<i<n (8)
are p-stable. Henceforth we will call sets of 8, that obey
this condition asbeing p-compatible. Now supposewe have
some é; that are p-compatible. Itisreadily shownthat if one
permits the lattice coefficients to vary according to

lai(k)]| <6 —e, 1<i<nm (9)
then no matter how small thee, onecanfind ratesof timevari-
ation under which theresulting LTV normalized lattice loses
p-stability. Thuswhereasit can sustain arbitrary adaptation
rates without losing stability, the normalized Gray-Markel
lattice can lose p-stability evenif (9), holds.

Accordingly this paper proposes an equivalent realiza-
tion of the LTI Gray-Markel lattice that has the following
property. If the §; are p-compatible, this realization remains
p-stable, aslong as (8) holds for some positive ¢, regardless
of the rate with which the «; (k) may vary.

Section 2 gives two key results from [6]. Section 3
defines the p-normalized lattice and gives a key algebraic
property it obeys. Section 4 argues the p-stability of the
time varying p-normalized lattice and gives a relation char-
acterizing the dependence between its input and out put
energy. Section 5 isthe conclusion.

2. AN UNNORMALIZED LTI ROBUST RELATIVE
STABILITY RESULT

In this Section we give two key results from [6]. The first
concerns characterization of p-compatibility.

Theorem 1 Consider the normalized Gray-Markel LTI Lat-
tice of fig. 1 with (1) holding, ap > 1 and 0 < ¢; < 1.
Define, should it exist, the sequence

_ pfici —6;
1—pbific1’

with fo = 1. Then the 6; are p-compatible iff the f, to f,
exist and obey

fi 1<i<n, (10

0<pfiz16; < 1. 1D

Now define the following sequence that depends on the
|(I,‘.

pgia(lonl.. . Joia]) ol
L —pgii(far] oo 1])|ou]
(12)

gi(Jaal], .-, |ai]) =

with go = 1. Notice f; = g:(|61],-..,]8:|). This sequence
will play an important role in the sequel. It has an appeal-
ing interpretation. Consider the unnormalized Gray-Markel
[attice obtained by choosing

{pivqivrhsi} = {(),’7‘, 1,1- O/’z?? —G,’yj}, 1<i<n. (13)

Of course in the LTI case the unnormalized Gray-Markel
lattice, [2] is an equivalent realization of the normalized
Gray-Markel lattice. Definethei-th block of fig. 1to bethe
block defined by p;, ¢;, i, s; and G;(2 7, aq,..., ;) tobe
the transfer function relating the upward input to this block
and the downward output from this block for the unnormal-
ized Gray-Markel lattice. Then it is shown in [5] that with
G(](Z_1) =1,

Gz ) — g

Gip1(z7h oy i) =

Thus,

i) = Gz e, ).

.qi(|ﬂ’1

Henceforth, for notational convenience drop the arguments
|a;| from the g;. Notice, that whenp = 1, g; = 1 aswell.
Define the matrices

P = diag{(1-af)--(1-a}_,), (14)

(1—Og)"'(l—03?171),...,1}, (15)

A = diag {p"q,p"_z,...qp,l} (16)

r = diag{gnfl/g[)agnfl/gla---:gn‘fl/gnf%]'@'?)
In the sequel we denote v = [arq, -+, a ]’

Theorem 2 Consider the LTI unnormalized lattice and its
SVR {A(a), b(a), c(«), d(a)} when the ith element of the
statevector isthe output of the delay element pointing toward
the ¢th block. Suppose for some p > 1 a given set of 0 <
8; < 1arep-compatible. Thenfor all |a;| < 6;, 1 < i < n,

1- %2 1 (@)a2 >0 (18)

1—z71Gi(z7 Y oy, oo o)



Further, the matrix
II(a) = AP(a)T(a) (19)
iss positive definite and obeys
p? A(0)T(0)A(a) —TI(a) < —Q'(a)Q(a)  (20)

with

Q(a) = /(1= p2g%_ (a)a2)e, (21)

ande,, isn x 1 vector
en =1[0,...,0,1].

The significance of this result is as follows. A system
with SVR {A,b,¢c,d} is p-stable iff the system with SVR
{pA,b,c,d} isstable. It hasbeen shownin [6] that the pair
[pA, Q] is completely observable. Thus, under (8) and the
p-compatiblity of the 6;, (20) acts asthe Lyapunov equation
that proves the p-stability of the LTI lattices. Further II
serves as a Lyapunov matrix and is a function of the lattice
parameters. This Theorem playsakey roleinthe subsequent
analysis.

3. THE p-NORMALIZED LATTICE
The proposed new lattice structure is defined below.

Definition 1 Consider the ¢; asdefined in the previous Sec-
tion, d; definedin (2) and

o [ @)
o) = | L6 @)

Then the p-normalized lattice isasin fig. 1 with
{pi,qi,ri, st} = {oy, diyi(a), di /7i(a), —a; b (23)

Notice the 4;(«) depend on «;. Further, it is shown
in [6] that these exist whenever (8) holds and the ¢; are p-
compatible. Moreover, should p = 1, then 4;(«) = 1 and
the p-normalized normalized lattice reduces identically to
the normalized lattice.

We now give astructural relationship between SVR's of
the p-normalized and the unnormalized lattice that will be
useful in the next section.

Theorem 3 Suppose the LTI unnormalized lattice has the
SVR{A(a),b(a),c(a), d(«)} definedin Theorem2 and that
{A(a),b(a), (), d(a)} is the SVR for the p-normalized
lattice when the ith element of the state vector is the output
of the delay element pointing toward the ith block. Define

1

ti{a) =

and
T(a) = diag{tn_1()tn_2(a) - t1(a),
tn—1(@)tn_a(a) - ta(a),
. ,tn,l(a‘), ].}

If (8) holds and the &; are p-compatible then T'(«) is non-
singular. In this case

(T a)A()T (), T71(a!b(a).;c(ar)T(a),11(0:)}
= {A(a),b(w), &(a),d(a)}.

Proof: Wegivean outlineonly. Thelast equality essentially
saysthat the p-normalized | attices stateis obtained by scaling
thesecondtolast stateelement by ¢,, 1, the previous element
by t,_1t,_o €tc.. Since these are constants, the ¢; can
commute with the delay elements. Thus the result follows
by equivalently scaling the ¢; and s; parameters.

This shows that for the same «, both the LTI p-
normalized and unnormalized lattice represent the same
transfer function whenever (8) holds and the 6; are p-
compatible. Also observethat in fact

T(a) = (T()P(a))~'/? (24)

4. PROPERTIESOF THE p-NORMALIZED
LATTICE

In this Section we give two properties of the LTV p-
Normalized Lattice. The first is the p-stability result that
motivates its formulation. Then we have the following the-
orem.

Theorem 4 Suppose the lattice parameters vary with time
and (9) holdswith é; p-compatible. Then the p-Normalized
Lattice existsand is p-stable with the state vector defined as
in Theorem 3.

Proof: Again only a proof outline will be given. This
outline we believe illuminates the procedure by which the
p-normalized latticewas arrived at. Assumethat (%) varies
with time. Expanding II(«(k)) into its component matrices
in (20) and pre and post-multiplying by T'(«(%)) and the
transformation (24) gives

P2 A (k) AA(a(k) — A < —Q'(a(k))Q(a(k)) (25)

where we have used the fact that the structure of Q(«/(k))
and T'(a(k)) makes

Q(a(k))T(a(k)) = Q(a(k)).

Thus, as A is constant and positive definite, the result fol-
lowsby showing that [A(«(k)), Q(a(k))]isuniformly com-
pletely observable (uco), (see [7] for definition. Showing
uco isastraightforward if tedious task.



Note its is this constant Lyapunov matrix A that is crit-
ical top-stability. An important property of the time vary-
ing normalized lattice is that it is all pass. However, the
p-Normalized Lattice is not all pass under time variation.
However the following input output relationship holds. We
omit ther proof.

Theorem 5 Consider the p-Normalized Lattice under the
conditions of Theorem 4. If u(k) is such that p*u(k), is
square summable, then

> < Y R al)  (@9)

k=—o0 k=—o0

whenever the systemisat initial rest. Here g, («(k)) isgiven
in Section 2.

Thus, asuitably scaled LTV p-Normalized L attice, when
viewed as a mapping from p*u* to p*y* is energy contrac-
tive.

5. CONCLUSION

Inthis paper, anew lattice structure was devel oped which
satisfied thefollowing properties: inthe LTI case, itstransfer
function is the same as that of the normalized lattice. In the
LTV caseit remains p-stableaslong asthelattice coefficients
are magnitude bounded in aregion where all LTI latticesare
p-stable. Thoughinthe LTV case, the lattice is not all pass,
it obeys a contractiveness property.
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