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ABSTRACT

Orthogonal frequency division multiplexing (OFDM) is apop-
ular transmission technique that is employed in applications such
as Digital Audio Broadcasting, Asymmetric Digital Subscriber Line
and wireless LAN. In this work we consider design of modulating
waveforms for OFDM in the presence of the delay spread and sys-
tem impairments such as frequency offset and timing mismatch.
We give a complete parameterization of OFDM modulating wave-
forms. Increasing robustness of OFDM to frequency offsets re-
quires using long modulating waveforms. To make the implemen-
tation of OFDM systems with long modulating waveforms feasi-
ble we propose fast implementation algorithms. Some preliminary
modulating waveform design examples are presented. The pre-
sented waveforms demonstrate that the robustness of OFDM sys-
tems to impairments can be improved by allowing certain degra-
dation of unnecessarily good performances of the state of the art
OFDM systems in ideal operating conditions.

1. PRINCIPLES OF OFDM

Consider a communication system which transmits a symbol stream
a, with a time interval�0 using a modulating waveform'. Trans-
mitted signal,s, is a linear combination of translates of', s(t) =P

m
a[m]'(t �m�0): In the presence of multipath propagation

the received signal,sr, is a superposition of delayed and attenuated
replicas of the transmitted signal,sr(t) =

P
i
ris(t � di): Note

that the propagation parametersri anddi in general vary with time.
If the intersymbol interval�0 is significantly shorter than the possi-
ble delay spread,d = maxi;j jdi�djj, this multipath propagation
causes severe intersymbol interference. An immediate way to cope
with this problem would be to transmit symbols with time intervals
larger than the delay spread, while using some form of parallelism,
e.g. frequency multiplexing, to maintain the symbol rate in a given
range. This requires dividing the symbol sequence into a number,
N , of subsequences and as many multiplexing waveforms. With
this multiplexing the transmitted signal takes the form

s(t) =

1X
m=�1

N�1X
k=0

ak[m]'k(t�mK�0); (1)

whereak and'k, k = 0; 1; : : :N � 1, denote the symbol subse-
quences and the modulating waveforms respectively. In order to
make this transmission scheme effective, the translation param-
eterK, we will call it the interframe interval, has to be larger
than the number of multiplexed subsequences,K > N . If this
new interval,K�0, exceeds the length of the modulating wave-
forms by more than the delay spread and if in addition modu-
lating waveforms occupy nonoverlapping frequency bands, then

it is possible to decompose the received signal into components
sk;m(t) = ak [m]

P
i
ri'k(t�di�mK�0);and thus eliminate in-

tersymbol interference using only linear band-pass filtering. This
transmission scheme eliminates intersymbol interference based on
good time-frequency separation between modulating waveforms
and their translates. This separation, however, can only be attained
at low transmission efficiencies, characterized by the ratioN=K.
The idea of orthogonal frequency division multiplexing [1, 2] is
to multiplex symbol sequences based on mutual orthogonality be-
tween modulating waveforms, and thus improve bandwidth effi-
ciency by allowing spectral overlap between the channels.

In this paper we study modulating waveforms for orthog-
onal frequency division multiplexing. The discrete-time system
model used in the sequel is described by the following two formu-
lae, which give the multiplexed transmitted signal and the received
signal as

s[n] =

1X
m=�1

N�1X
k=0

ak[m]'k[n�mK]; (2)

and

sr [n] =

RX
i=0

ris[n� di]: (3)

For notation conveniencewe assume that the sampling interval and
�0 are equal to1, and thatr0 = 1 andd0 = 0.

Modulating waveforms for OFDM need to satisfy two main
requirements:

1) translates of modulating waveforms by integral multiples of
the interframe interval need to be mutually orthogonal,X

n

'i[n� lK]'j[n�mK] = �[i� j]�[l�m]; (4)

2) fast implementation should be feasible.

The orthogonality condition in (4) suggests detection of transmit-
ted symbols as

~al[m] =
X
n

sr [n]'l[n�mK]: (5)

Due to the multipath propagation, the detected symbol~al[m] is
different from the corresponding transmitted symbol and they are
related as

~al[m] = �l[m]al[m] + �l[m]; (6)

where�l[m] is the fading factor which in principle can be com-
pensated for using one-tap equalization, and�l[m] represents in-
tersymbol interference. The intersymbol interference component



�l[m] is given by

�l[m] =

RX
i=1

ri
X

(j;k)6=(l;m)

aj [k]I(j;k; l;m; di); (7)

where the interference factorsI(j;k; l;m; di) represent inner prod-
ucts

I(j;k; l; m;di) =
X
n

'l[n�mK]'j[n� kK � di]:

The goal of modulating waveform design is therefore to minimize
these interference factors under the two main design requirements.

Modulating waveforms in the form of complex exponentials

'k[n] = (1=
p
N)exp(j2�kn=N); 0 � n � N � 1;

that satisfy the orthogonality condition in (4) and provide the con-
venience of Fast Fourier Transform based implementation are an
immediate solution. However, due to their bad frequency local-
ization, with these modulating waveforms multipath propagation
causes severe interference between symbols across different OFDM
channels. An incredibly simple but very effective way to deal with
this problem, proposed in [3], is to use for detection another set of
waveforms, as

~al[m] =
X
n

sr[n] l[n�mK]; (8)

where k areK samples long complex exponentials

 k[n] = (1=
p
N)exp(j2�kn=N); 0 � n � K � 1;

Since k is orthogonal to translates of all modulating waveforms
'l; l 6= k, of the form'l[n �mK � di] for all delay parame-
ters in the range0 � di � K � N , in this manner intersymbol
interference is completely eliminated if the delay spread does not
exceed the guard intervalTg = K � N . This detection algo-
rithm is referred to as thecyclic prefix. The problem with this
approach to modulation and detection is that the system perfor-
mance is drastically degraded in the presence of timing mismatch
or frequency offsets, or if the delay spread exceeds the guard in-
terval. In this paper we investigate modulating waveforms in the
form of windowed complex exponentials with no restrictions on
window length other than those imposed by overall processing de-
lay. The motivation is to search through the complete set of OFDM
windows for those which allow certain intersymbol interference in
ideal operating conditions in exchange for improved performances
in the presence of system impairments.

2. PARAMETERIZATION OF OFDM WINDOWS

The requirement for orthogonality between modulating waveforms
given in (4) in the case when the waveforms are modulated ver-
sions of a given window

'k [n] = v[n]exp(j2�kn=N) (9)

is equivalent to the following set of conditions on the window func-
tion:X
i

v[n + iN ]v[n+ iN + jK] =
1

N
�[j]; n = 0; 1; : : :N � 1:

(10)

The complete set of solutions to this system of equations was first
given in [4], in a closed form, in the context of short-time Fourier
analysis. Actually it turns out that the same set of constraints de-
scribes windows which give the so called tight Weyl-Heisenberg
frames, that are used as the tool of short-time Fourier analysis.
It is interesting to note that while the modulating waveforms and
their translates used for OFDM are orthogonal and span proper
subspaces of̀2(Z), corresponding Weyl-Heisenberg frames are
linearly dependent, redundant families of vectors iǹ 2(Z).

The complete parameterization of windows that satisfy the
system of constraints in (10) will be given based on the OFDM
multiplexer polyphase representation. For that purpose it is con-
venient to represent the multiplexer output signals given by (2) in
terms of itsK polyphase components as

S(z) =

K�1X
l=0

Sl(z
K)z�l; where Sl(z) =

1X
n=�1

s[nK + l]z�n:

The polyphase components ofs are related to input data sequences
as

[S0(z) : : : SK�1(z)]
T =M(z)[A0(z) : : :AN�1(z)]

T : (11)

whereM(z) is aK �N polynomial matrix that is the polyphase
representation of the multiplexer andAi(z) =

P
n
ai[n]z

�n. The
matrixM(z) has the formM(z) = V(z)FN ; whereFN is the
N -point discrete-Fourier transform matrix, andV(z) is theK�N
matrix given as follows. LetM be the least common multiple of
K andN , andJ andL the two integers satisfyingJK = LN =
M . Consider theM -component polyphase representation of the
windowv,

V (z) =

M�1X
j=0

z�jVj(z
M); Vj(z) =

1X
n=�1

v[nM + j]z�n:

The row l, 0 � l � K � 1, of V(z) hasJ nonzero entries and
these are polynomialsz�pVpK+l(zJ), p = 0; 1; : : : J � 1. The
polynomialz�pVpK+l(z

J) is in the columnk(l; p) wherek(l; p)
is the number satisfyingqN + k(l; p) = pK+ l; for some integer
q, 0 � q � L� 1.

Example 1 K andN are coprime, (K = 3 andN = 2).

V(z) =

"
V0(z

2) z�1V3(z
2)

z�1V4(z
2) V1(z

2)
V2(z

2) z�1V5(z
2)

#
:

Example 2 K andN have a common factor other thanN , (K =
6 andN = 4). The matrixV(z) in this case has the form2
66664

V0(z
2) 0 z�1V6(z

2) 0
0 V1(z

2) 0 z�1V7(z
2)

z�1V8(z
2) 0 V2(z

2) 0
0 z�1V9(z

2) 0 V3(z
2)

V4(z
2) 0 z�1V10(z

2) 0
0 V5(z

2) 0 z�1V11(z
2)

3
77775 :

It can be shown that the modulating waveforms in (9) satisfy
the orthogonality condition given by (4) if and only if the corre-
sponding matrixV(z) is paraunitary,VT (z�1)V(z) = (1=N)IN ;
(IN denotes theN �N identity matrix). IfN andK are not co-
primeV(z) is not full, so it is paraunitary if and only if a particular
set ofN=J of its submatrices are paraunitary. As an illustration,
consider again the two examples given above.



Example 3 The matrixV(z) in Example 1 is paraunitary if and
only if the matrix

U(z) =

"
V0(z) V3(z)
V4(z) zV1(z)
V2(z) V5(z)

#
(12)

is paraunitary.

Example 4 The matrixV(z) in Example 2 is paraunitary if and
only if the matrices

U0(z) =

"
V0(z) V6(z)
V8(z) zV2(z)
V4(z) V10(z)

#
U1(z) =

"
V1(z) V7(z)
V9(z) zV3(z)
V5(z) V11(z)

#

are paraunitary.

In general, theM = LCM(K;N) polyphase components of a
window for anN channel OFDM withK point interframe interval
are given up to time delays as entries ofN=J paraunitary matrices
of sizeL � J , and vice versa. Parameterizations of paraunitary
matrices have been previously studied in the filter bank literature
[5].

Example 5 In the case of ofN = 128 channel OFDM withK =
192 point interframe interval theM = 384 polyphase components
of the corresponding window are given as entries of64 parauni-
tary 3� 2 matrices as

Ui(z) =

"
V0�64+i(z) V3�64+i(z)
V4�64+i(z) zV1�64+i(z)
V2�64+i(z) V5�64+i(z)

#
; i = 0; 1; : : : 63:

Observe the delay factors next to the entriesV1�64+i in the above
matrices, which result in two64-tap long zero segments in the cor-
responding window.

2.1. Fast Implementation

Fast implementation algorithms for OFDM follow directly from
the polyphase representation of the multiplexer. Observe that the
polyphase components of the multiplexed signal are given as

[S0(z) : : : SK�1(z)]
T = V(z)[C0(z) : : : CN�1(z)]

T (13)

whereCk(z) =
P

n
ck[n]z

�n, and the sequencesck, are obtained
from the input symbol sequencesby applying discrete Fourier trans-
form,

[c0[n] c1[n] : : : cN�1[n]]
T = FN [a0[n] a1[n] : : : aN�1[n]]

T :
(14)

Each row ofV(z) contains onlyJ nonzero elements that areL=M�
1 order polynomials, whereL is the window length. Computing a
point in the sequences from sequencesci thus requiresL=K mul-
tiplications andL=K � 1 additions. The overall numerical com-
plexity of this multiplexer implementation per point of the output
sequence is

L

K
multiplications +

�
L

K
� 1
�
additions +

C(FFTN )
K

; (15)

whereC(FFTN ) denotes complexity of anN -point FFT algo-
rithm. Note that we consider real valued windows, and that se-
quencesci are complex, so multiplication here means multiplica-
tion of a complex number by a real number, and addition refers

to complex addition. Complexity of anN point FFT algorithm is
O(Nlog2N) complex multiplications and additions.

One of the reasons for which long windows, i.e. longer than
K taps, were not used for OFDM was that polyphase multiplexer
representations were not known for cases with rationalK=N ra-
tios, and hence it was not clear that fast implementations based on
FFT were possible.

3. WAVEFORM DESIGN EXAMPLES

In this section we present several design examples and compare
them based on a measure of intersymbol interference. As the mea-
sure of intersymbol interference we consider the sum of squares of
all individual components in the expression for intersymbol inter-
ference in (7), assuming that all transmitted symbols are equal to
1 and assuming a two-ray multipath propagation model

sr[n] = s[n] + s[n� d]: (16)

This gives some average measure of interference for the given mul-
tipath propagation model, independent of the chosen pair of in-
dicesl andm and it has the form

Ia =
X

(j;k)6=(l;m)

jI(j;k; l; m;d)j2: (17)

A window, v160, for N = 128 channel OFDM withK = 160
point interframe interval is shown in Figure 1. The total length of
v160 isL = 1024, however only640 of its taps are different from
zero, and that number is relevant for the implementation complex-
ity. Figure 2 shows intersymbol interference plots calculated for
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Figure 1: Windowv160 for 128 channel OFDM with160 point
interframe interval. a) Time domain plot. b) Lin-log plots of mag-
nitude responses ofv160 and the128-tap rectangular window.



v160 (solid lines) together with intersymbol interference plots for
the lengthL = 128 rectangular window with cyclic prefix detec-
tion (dashed lines), for the two-ray propagation model. For each
of the windows there are two plots in the figure, one of which
gives intersymbol interference assuming no frequency offset, and
the other assuming5% frequency offset. The plots that correspond
to the case with no frequency offset (those with lower intersymbol
interference) demonstrate the absence of intersymbol interference
for the cyclic prefix detection when the delay spread is smaller
than a certain value, as well as the dramatic degradation of its per-
formance as soon as the delay spread exceeds that limit, which is
in this case equal to(K � N)=2. Note that the cyclic prefix de-
tection can be set to work perfectly for the delay spreads up to the
length of the guard intervalTg = K � N , but in that case even
one point timing mismatch increases intersymbol interference to
�18dB. All plots shown in this paper represent the cyclic prefix
detection set to be maximally robust to timing mismatch, which
in turn reduces the range of the delay spread for which this tech-
nique exhibits excellent performances. Even with no frequency
offset one can observe4 � 6dB improvement attained withv160
for a wide range of delay spread values beyondTg=2. The plots
obtained for5% frequency offset demonstrate clear improvement
attained withv160, which is 0 � 4dB for delay spreads smaller
thanTg=2, and4� 6dB for larger delay spreads.
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Figure 2: Intersymbol interference,20 log10 Ia, for OFDM with
v160 (solid lines) and for the cyclic prefix detection (dashed lines).
The plots show intersymbol interference for the two-ray propa-
gation model in (16), calculated for the cases with no frequency
offset (curves with lower intersymbol interference) and with5%
frequency offset.

A window, v192, for N = 128 channel OFDM withK =
192 point interframe interval is shown in Figure 3. Intersymbol in-
terference plots for OFDM with this window and the cyclic prefix
detection withTg = 64 point guard interval are shown in Figure
4. The improvement of robustness over the cyclic prefix detec-
tion is 5 � 7dB for delay spreads larger thanTg when there is no
frequency offset. In the presence of5% frequency offset the im-
provement is0 � 9dB for d < Tg=2 and5� 7dB for d > Tg=2.
Observe also from Figure 2 and Figure 4 that increasing the inter-
frame interval fromK = 160 to K = 192 provides around5dB
reduction of intersymbol interference, when OFDM is based on
windowsv160 andv192. This is of course paid by the correspond-
ing loss in transmission efficiency.
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Figure 3: Windowv192 for 128 channel OFDM with192 point
interframe interval.
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Figure 4: Intersymbol interference,20 log10 Ia, for 128 channel
OFDM with 192 point interframe interval, for windowv192 (solid
lines) and for the cyclic prefix detection (dashed lines). The plots
show intersymbol interference for the two-ray propagation model
in (16), for the cases with no frequency offset (curves with lower
intersymbol interference) and with5% frequency offset.
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