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ABSTRACT

We derive two new algorithms for reconstructing a discrete-
time 1-D signal from the phase of its discrete-time Fourier
transform (DTFT) at irregular frequencies. Previous
algorithms for this problem have either required the
computation of a matrix nullspace, requiring O(N3)
computations, or have been iterative in nature; for the
latter, the irregularity of the frequency samples pre-
cludes use of the fast Fourier transform. Our �rst algo-
rithm requires only O(N2) computations (O(N log3N )
asymptotically). In the special case of equally-spaced
frequency samples, it is related to a previous algorithm.
The second algorithm is recursive{at each recursion a
meaningful magnitude retrieval problem is solved. This
is useful for updating a solution; it also allows checking
of the result at each recursion, avoiding any errors due
to computational roundo� error and ill-conditioning of
the problem.

1. INTRODUCTION

The problem of reconstrucing a discrete-time signal
from its DTFT phase has been studied extensively over
the last �fteen years. Ref. [1] gives the basic unique-
ness results for reconstrucing a 1-D discrete-time �nite-
support signal from its DTFT phase, and two approaches
were proposed. The so-called closed-form solution re-
quired solution of a large and ill-conditioned linear sys-
tem of equations (see (2) below). The other was an
alternating projections (AP) algorithm, in which the
support and given DTFT phase value constraints were
alternately imposed in the time and frequency domains.
When the frequencies at which the phases are known
are uniformly distributed on the unit circle, the linear
system of equations has a Toeplitz-plus-Hankel struc-
ture [2]. This is related to a special case of the �rst of
our two algorithms. We will not attempt to review all
recent approaches to this problem; for a more complete
reference list see [3].

The main application of reconstruction of Fourier
magnitude from phase is blind deconvolution of an un-
known symmetric or Hermitian blurring function to de-

termine an unknown signal, when only the supports
of both unknown signals are known (see below). For
other applications see [3]. The results of this paper are
applicable if phase information at some frequencies is
di�cult to measure or corrupted by noise. Actually,
this work was motivated by some recent work in phase
retrieval, in which the central part of the approach re-
quires the solution of a magnitude retrieval problem at
nonuniformly-spaced frequencies.

This paper derives two new algorithms for the mag-
nitude retrieval from DTFT phase problem. The �rst
algorithm reduces the computation required for an ex-
act, noniterative solution from O(N3) to O(N2) com-
putations (and asymptotically O(N log3N ) for su�-
ciently large N ). The main requirement is solution of
a block-Toeplitz linear system of equations with 2 � 2
blocks, in lieu of �nding the nullspace of an unstruc-
tured linear system of equations. The second algorithm
is recursive, and solves magnitude retrieval problems of
increasing size. This has two major advantages:

1. At each recursion, it can be con�rmed that the
solution at that stage does indeed solve its prob-
lem. Thus the algorithm is self-correcting, since
errors due to roundo� or ill-conditioning can be
detected and corrected (using AP) before they
increase;

2. The solution to a magnitude retrieval problem
can be updated if additional phase information
becomes known. If the phase values come in a
data stream, this can be utilized to incorporate
each phase value as it arrives.

This conference paper is a condensed version of the
longer paper [3].

2. BASICS OF MAGNITUDE RETRIEVAL

2.1. PROBLEM FORMULATION

The z-transform and DTFT of the discrete-time signal
x(n) are de�ned as

X(z) =
X

x(n)z�n (1)



X(ej!) =
X

x(n)e�j!n = jX(ej!)jejARG[X(ej!)]

where ARG[X(ej!)] is the principal value (wrapped
phase) of the phase of X(ej!). In the sequel, "phase"
refers to the former.

We are given that x(n) is real, with support on
the interval [�N=2; N=2] for some even N ; thus x(n) is
nonzero only for N +1 (an odd number of) points, cen-
tered on the origin n = 0. This avoids ambiguities due
to linear phase. The goal is to reconstruct X(ej!) (or
equivalently x(n)) from its phase �(!) = ARG[X(ej!)]
at any N frequencies 0 < !1 < !2 < : : : < �. This re-
striction is necessary since ARG[e�j!n)] = �ARG[ej!n)];
there is no additional information at the conjugate fre-
quencies. Otherwise, there is no restriction on the val-
ues of !k; they need not be evenly spaced. We refer to
irregularly-spaced frequencies as irregular frequencies.

From [1], this problem has a unique solution to an
overall scale factor, provided that X(z) has no zeros
in reciprocal pairs. We assume this throughout in the
sequel, and we consider the problem solved when x(n)
is determined to within an overall scale factor (which
may be negative).

2.2. Previous Solutions

The obvious way to solve this problem is as follows [1].
Insert the data into (1), multiply by e�j�(!k), and take
the imaginary part. This produces the following linear
system of N equations in N + 1 unknowns (the under-
determination produces the arbitrary scale factor):

N=2X
n=�N=2

x(n)sin(!kn+ �(!k)) = 0; 1 � k � N (2)

Determination of the nullspace x(n) of this unstruc-
tured linear system requires O(N3) computations. Fur-
thermore, this system tends to be ill-conditioned [1].

The other way is to use an alternating projections
(AP) algorithm. At each iteration, the present iterate
is projected on the �nite support [�N;N ] in the time
domain, and on the given phases �(!k) in the frequency
domain. Since both sets are convex, the algorithm is
guaranteed to converge. However, there are two major
problems with this approach:

1. Since the phase is given at irregular frequencies
!k, the FFT cannot be used to go back and forth
between the time and frequency domains. This
greatly increases the amount of computation;

2. We have observed that having only partial phase
information (knowledge of �(!) only at the ir-
regular !k) slows down convergence of the AP
algorithm (see [3] for details).

2.3. Application to Blind Deconvolution

Suppose we observe y(n) = h(n) � x(n), where h(n)
and x(n) are both known to have support on �nite
intervals, h(n) is known to be symmetric (h(�n) =
h(n)), and x(n) can be assumed to have no zeros in
reciprocal locations. Otherwise both the blur function
h(n) and the desired signal x(n) are unknown. The
blind deconvolution problem is to compute both h(n)
and x(n) from y(n). The assumption that the unknown
blurring, defocusing, or point-spread function h(n) is
even is often reasonable in optics, for example.

Taking the DTFT of y(n) = h(n) �x(n) and taking
ARG of the result gives ARG[Y (ej!)] = ARG[X(ej!)].
The reconstruction of x(n) from y(n) (to a scale factor)
is thus a magnitude retrieval problem.

3. FAST ALGORITHM FOR MAGNITUDE

RETRIEVAL

3.1. Interpolation of y(n) from �(!k)

We de�ne the signal y(n) such that:

1. y(n) has support [�N � 1; N + 1] (twice the size
of the support of x(n));

2. y(n) has DTFT phase �(!k);

3. y(n) has even part �(n), so that Y (z) � 1 is an
odd function.

Y (z) can be computed recursively using

Y (z) = 1 + (z � 1

z
)[Y0 + Y1(z � 2 cos(!1) +

1

z
)

+Y2(z � 2 cos(!1) +
1

z
)(z � 2 cos(!2) +

1

z
)

+ : : :]jz=ej!k = tan(�(!k)) (3)

by setting z = ej!k for k = 1; 2 : : : in succession. After
all N phase values have been incorporated, the result-
ing Y (z) clearly satis�es the above conditions and is
almost surely unique.

y(n) is an almost-odd function which satis�es the
magnitude retrieval problem, but its support is too big
by a factor of two. This shows why this recursive inter-
polation formula cannot be used to solve the magnitude
retrieval problem directly{we would need to interpolate
at both e�j!k , resulting in a solution with too large a
support.



3.2. Reduction from y(n) to x(n)

Let xe(n) = (x(n)+x(�n))=2 be the even part of x(n).
Since xe(n) has zero phase (or phase �, but this only
appears in the overall scale factor), xe(n)�y(n) has the
correct phases �(!k). The even part of xe(n) � y(n) is
xe(n) (as it should be), but its odd part xe(n)� (y(n)�
�(n)) has support on [�3N

2 � 1; 3N2 + 1], which is now
too large by a factor of three!

However, we know that the even part of xe(n)�y(n)
is indeed xe(n). Since the even part is correct, the odd
part must equal the odd part xo(n) = (x(n)�x(�n))=2
of x(n) at the frequencies !k:

Xo(z)jz=ej!k = Xe(z)Y (z)jz=ej!k : (4)

This can be rewritten as

X0(z) � Xe(z)Y (z)modP (z); (5)

P (z) =
NY
k=1

(z � 2 cos(!k) +
1

z
)

which in turn can be rewritten as

Y (z)Xe(z) + P (z)Q(z) = X0(z) (6)

where

1. Y (z) is known and has degree 2(N + 1);

2. P (z) is known and has degree 2N ;

3. Xe(z) and Xo(z) are unknown with degrees N ;

4. Q(z) is unknown and has degree N + 2.

We cannot apply the Euclidian algorithm to (6) to com-
pute Xe(z) and Q(z) from the known Y (z) and P (z),
since the right side Xo(z) is unknown. However, we
can equate coe�cients of zi for jij > N

2
. This results

in the linear system of equations
2
666664

y(N + 1) 0 j 0 0

y(N )
. . . j p(N ) 0

y(N � 1)
.. . j p(N � 1)

.. .
...

. . . j ...
. . .

3
777775

2
66664

xe(
N
2 )
...

q(N2 + 1)
...

3
77775

= [0; 0 : : :0]T (7)

This is clearly a matrix with Toeplitz blocks. Hence
the linear system of equations can be reorganized into a
block-Toeplitz linear system with 2�2 blocks. This lin-
ear system can be solved using the multichannel Levin-
son algorithm in O(N2) computations. Due to the even
symmetry of all of the signals, the size of the linear sys-
tem can be reduced by a factor of two, at the price of
making it Toeplitz-plus-Hankel. For su�ciently large
N , the so-called "superfast" algorithms can be used to
solve the linear system in O(N log2N ) computations.

3.3. Summary of Procedure: Fast Algorithm

The overall procedure can be summarized as follows:

1. Compute Y (z) from the phases �(!k) using (3);

2. Compute P (z) from the frequencies !k using (5);

3. Set up and solve the linear system of equations
(7), yielding Xe(z) and Q(z);

4. Compute Xo(z) with (6). X(z) = Xe(z)+Xo(z).

Note that for large N , each of these steps can be per-
formed in O(N log3N ) or fewer computations (see [4]
for details). Hence the overall algorithm is O(N log3N )
for su�ciently large N . This is a considerable improve-
ment over the O(N3) computations required by solu-
tion to the linear system (2).

3.4. Relation to PreviousAlgorithm for Equally-

Spaced Frequencies

Consider now the special case !k = 2� k
2N+1 , which

corresponds to equally-spaced frequencies on the unit
circle for the zero-padded discrete Fourier transform
(DFT) of x(n). In this case,

1. The interpolation (3) becomes an inverse DFT;

2. P (z) = z2N+1�1
z�1 ;

3. (7) can be derived more easily by taking the in-
verse DFT of jXo(k) = Xe(k) tan�(k), where in-
dices now pertain to the DFT.

This results in a Toeplitz-plus-Hankel linear system of
equations, which can be solved in O(N2) operations.
There is no real advantage over irregular frequency
samples, but it is interesting to note that this approach
is closely related to [2], in which the inverse DFT of
X(k) = X(�k)ej2�(k) was taken, resulting in a di�er-
ent Toeplitz-plus-Hankel linear system of equations.

In this regard, the approach we have taken can
be viewed as a generalization of [2] to irregular fre-
quency samples, with no signi�cant attendant increase
in computatation. Our approach here reduces to [2]
in the special case of "complete" phase information at
equally-spaced frequencies.

4. RECURSIVE ALGORITHM FOR

MAGNITUDE RETRIEVAL

We now present another magnitude retrieval algorithm
that is recursive: At each step an actual magnitude
retrieval problem, which is a subproblem of the given
problem, is solved. At each recursion, the size of the



problem solved increases by one, until the actual prob-
lem is reached. Note that this is similar in concept to
the Levinson algorithm,which recursively solves Toeplitz
systems of equations of increasing size.

Although this algorithm requires O(N3) computa-
tions, and requires the storage of all the solutions to the
smaller problems (unlike the Levinson algorithm,which
only requires storage of the most recent solution), the
computation and storage requirements are still only a
fraction of those for direct solution of (2). And the
recursive nature of this algorithm makes it very useful
if computational roundo� error may be a problem{at
each recursion, we can con�rm that we have solved the
problem we should be solving, and if there is a slight
error an AP algorithm can be used to correct the error.
Thus the algorithm is self-checking and self-correcting.

4.1. Problem Formulation

We now alter the formulation of the magnitude re-
trieval problem. We are still given the phase �(!k) =
ARG[X(ej!k)] of x(n), but now x(n) is de�ned to have
support for n � 0.

De�ne the nested set of magnitude retrievals:

ARG[XK(z)jz=ej!k ] = �(!k); 1 � k � K � N (8)

Thus XK (z), which has degree K, has the speci�ed
phase �(!k) at the K frequencies ! = !1 : : : !K . xK(n)
has support on [0;K] and has K+1 nonzero values. At
each recursion, we update from fX1(z) : : :XK (z)g (the
results from all previous recursions are available) to
fX1(z) : : :XK+1(z)g (we compute the solutionXK+1(z)
to the next larger problem).

4.2. Problem Solution

Let WK+1(z) be any polynomial of degree K+1 which
has phase �(!1) at z = ej!1 . For example, we may
use WK+1 = c0 + zK+1 or c0z + zK+1. Choose the
coe�cient c0 so that WK+1(z) has the proper phase.

Next, note that WK+1(z) +
PK

k=1 ckXk(z) has the
proper phase at !1, since each term in the sum has
the proper phase by construction, and phase is closed
(to addition by �) under linear combination. Note also

that
PK

k=2 ckXk(z) has the proper phase at !2. Hence
we can choose the coe�cient c1 so that c1X1(k) +
WK+1(z) has the proper phase at !2, and then the
overall sum will have the proper phase at !2. Note the
choice of c1 is unique.

Next, note that
PK

k=3 ckXk(z) has the proper phase
at !3. Hence we can choose the coe�cient c2 so that
c1X1(z)+ c2X2(z) +WK+1(z) has the proper phase at
!3. Then the overall sum will have the proper phase
at !3. Note the choice of c2 is unique.

Continuing in this way, we successively compute ck
in increasing k, until k = K is reached. The result-
ing sum has the proper phase at !K+1, so this sum
is the solution to the magnitude retrieval problem for
k = K + 1. This can be continued until the ultimate
problem at K = N is reached.

4.3. Example

We present a small numerical example to illustrate this
algorithm. We wish to compute the signal that has the
following phases at the following frequencies:

�(�=2) = �1:107;�(�=3) = �0:606

These frequencies are not evenly spaced on jzj = 1.
We proceed as follows, replacing z with 1

z
.

1. Let W2(z) = c0z � z2. Then:

2. ARG[W2(e
�j �

2 )] = ARG[1 � jc0] = �1:107 !
c0 = 2

3. ARG[X1(e�j
�
2 )] = ARG[1 � jx1] = �1:107 !

x1 = 2

4. ARG[(W2+c1X1)] = ARG[(2z�z2)+c1(1+2z)]

5. = ARG[(2c1+ 1:5)� j
p
3(c1 + 0:5)] = �0:606!

c1 = 0:5

6. X2(z) = (2z � z2) + 0:5(1 + 2z) = 0:5 + 3z � z2

and indeed any multiple of the signal [0:5; 3;�1] has
the desired phases.
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