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ABSTRACT

Jump Markov linear systems (JMLS) are linear systems whose pa-
rameters evolve with time according to a finite state Markov chain.
We present three original deterministic and stochastic iterative al-
gorithms for optimal state estimation of JMLS whose computa-
tional complexity at each iteration is linear in the data length.
The first algorithm yields conditional mean estimates. The sec-
ond algorithm is an algorithm that yields the marginal maximum
a posteriori(MMAP) sequence estimate of the finite state Markov
chain. The third algorithm is an algorithm that yields the MMAP
sequence estimate of the continuous state of the JMLS. Conver-
gence results for these three algorithms are obtained. Computer
simulations are carried out to evaluate their performance.

1. INTRODUCTION
Jump Markov linear systems are widely used in several fields of
signal processing and include, as particular cases, common mod-
els in seismic signal processing [4], [9], communications [1] and
target tracking (see [8] for many examples and references). Given
a set of observations, our aim is to estimate respectively the con-
ditional mean estimate of the states and the marginal maximuma
posteriori (MMAP) sequence estimate of the finite state Markov
chain and of the continuous state of the JMLS. It is well known
that exact computation of these three estimates for JMLS involves
a prohibitive computational cost, exponential in the number, say
T , of observations. Thus in practice, it is necessary to consider
suboptimal estimation algorithms. A variety of such suboptimal
algorithms has already been proposed in the literature [9], [8], [12].

In this paper, we present iterative deterministic and stochas-
tic algorithms to solve the three above mentioned problems. They
have a computational cost ofO (T ) per iteration. Convergence re-
sults are also obtained. The range of applicability of the proposed
methods is wider than the previous methods, including recent work
in [5], [8]. Moreover, it can be theoretically established that they
are more efficient in a specified sense.

2. MODEL AND ESTIMATION OBJECTIVES
2.1. Signal model
Throughout this paper, we will usenz to denote the dimension of
an arbitrary vectorz. Let t 2 f1; 2; :::g denote discrete time and
let rt be a discrete-time, homogeneous,s-state, first-order Markov
chain with transition probabilitiespij , Prfrt+1 = jjrt = ig
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and initial probability distributionpi , Prfr1 = ig, (i; j 2 S),
S = f1; 2; :::; sg. Consider the following JMLS:

xt+1 = A (rt+1)xt +B (rt+1) vt+1 + F (rt+1)ut+1 (1)

yt = C (rt)xt +D (rt)wt +G (rt)ut (2)

wherext 2 R
nx is the system state,yt 2 R

ny is the observa-

tion at timet, ut 2 R
nu is a known deterministic input,vt

i:i:d:�
N (0; Inv) 2 R

nv ,wt
i:i:d:� N (0; Inw) 2 R

nw andD (i)DT (i) >
0 (8i 2 S). x0 � N (x̂0; P0) whereP0 > 0 andx0; vt andwt

are mutually independent for allt. The model parameters� ,
fpi; pij ; A (i) ; B (i) ; C (i) ; D (i) ; F (i) ; G (i) ; x̂0; P0; i; j 2 Sg
are assumed known. We denote forp; q, p < q,yp:q as(yp; :::; yq),
xp:q as (xp; :::; xq), rp:q as (rp; :::; rq) and finallyN (m;�) as

j�j�1=2 exp
�
� 1

2
mT��1=2m

�
.

2.2. Estimation objectives
Giveny1:T and assuming that� is known, any required Bayesian
inference for JMLS can be made usingp (r1:T ;x0:T jy1:T ). We
consider the three following optimal estimation problems:
� Conditional Mean Estimates ofx0:T and r1:T : compute opti-
mal (in a mean square sense) estimates ofx0:T andr1:T given by
E fr1:T jy1:T g andE fx0:T jy1:T g.
�MMAP Sequence Estimate ofr1:T : compute optimal (in a MAP
sense) state estimates ofr1:T by maximizingp (r1:T jy1:T ).
�MMAP Sequence Estimate ofx0:T : compute optimal (in a MAP
sense) state estimates ofx0:T by maximizingp (x0:T jy1:T ).

3. CONDITIONAL MEAN ESTIMATION
E fr1:T jy1:T g and E fx0:T jy1:T g are obtained by integration
with respect top (r1:T ;x0:T jy1:T ). If we were able to obtain

N (N � 1) i.i.d. samples
n�
r
(k)
1:T ;x

(k)
0:T

�
; k = 1; :::; N

o
dis-

tributed according to the joint distribution then, using the Law of
Large Numbers, conditional mean estimates could be computed by
averaging. Obtaining such i.i.d. samples from the posterior distri-
bution is not feasible. This is why we propose here a Markov chain
Monte Carlo (MCMC) method [11].

3.1. Algorithm
We simulate samples from the posterior distribution using the fol-
lowing iterative MCMC method.k denotes the iteration number.

MCMC algorithm to obtain the conditional mean estimates

1. Initialization. Set randomly r(0)1:T .



2. Iteration k, k � 1

� For t = 1; : : : ; T , sample r
(k)
t � p

�
rtjy1:T ; r(k)�t

�
.

� Optional step. Sample x(k)0:T � p
�
x0:T jy1:T ; r(k)1:T

�
.

wherer(k)�t ,

�
r
(k)
1 ; : : : ; r

(k)
t�1; r

(k�1)
t+1 ; : : : ; r

(k�1)
T

�
. Note that if

one is not interested in estimatingx0:T , then it is not necessary

to sample fromp
�
x0:T jy1:T ; r(k)1:T

�
. The obtained samples are

used to compute conditional mean estimates of the statesr1:T and
x0:T using the following ergodic averagesr1:T , 1

N

PN�1
k=0 r

(k)
1:T

andx0:T , 1
N

PN�1
k=0 x

(k)
0:T .

3.2. Implementation issues
This algorithm requires to be able to sample fromp

�
rtjy1:T ; r(k)�t

�
for t = 1; : : : ; T and optionally fromp

�
x0:T jy1:T ; r(k)1:T

�
. A

direct evaluation of these distributions would have a complexity
O
�
T 2
�
. We develop here an algorithm of complexityO (T ),

which relies on the following lemmas and proposition.
Lemma 1 For anyt = 2; :::; T � 1

p (y1:T j r1:T ) = p (y1:t�1j r1:t�1) p (ytjy1:t�1; r1:t)
� R

p (yt+1:T j rt+1:T ; xt) p (xtjy1:t; r1:t) dxt
p (yt:T j rt:T ; xt�1) =

R
p (yt+1:T j rt+1:T ; xt)

�p (yt; xtj rt; xt�1) dxt

Lemma 2 For any t = 1; :::; T , p (yt:T j rt:T ; xt�1) is a Gaus-
sian distribution of meanMt (rt:T )xt�1 + E [Nt (rt:T )] and co-
variancecov [Lt (rt:T )] > 0 withLt (rt:T ) , Nt (rt:T )N

T

t (rt:T )
where

P 0�1

t�1jt (rt:T ) ,M T

t (rt:T )L
�1
t (rt:T )Mt (rt:T )

P 0�1

t�1jt (rt:T )m
0
t�1jt (rt:T ) ,M T

t (rt:T )L
�1
t (rt:T )yt:T

are given by the following backward information filter recursion.

1. Initialization

P 0�1

T jT (rT ) = CT (rT )
�
D (rT )D

T (rT )
��1

C (rT )

P 0�1

T jT (rT )m
0
T jT (rT ) = CT (rT )

�
D (rT )D

T (rT )
��1

� (yT �G (rT )uT )

(3)

2. Backward recursion. Fort = T � 1; : : : ; 1,

P 0�1

tjt+1 (rt+1:T ) = AT (rt+1)P
0�1

t+1jt+1 (rt+1:T ) (Inx�
B (rt+1)�t+1 (rt+1:T )B

T (rt+1)P
0�1

t+1jt+1 (rt+1:T )
�

�AT (rt+1)

P 0�1

tjt+1 (rt+1:T )m
0
tjt+1 (rt+1:T ) = AT (rt+1) (Inx �B (rt+1)

��t+1 (rt+1:T )B
T (rt+1)P

0�1

t+1jt+1 (rt+1:T )
�

�P 0�1

t+1jt+1 (rt+1:T )
�
m0

t+1jt+1 (rt+1:T )� F (rt+1)ut+1

�
�t+1 =

h
Inv +BT (rt+1)P

0�1

t+1jt+1 (rt+1:T )B (rt+1)
i�1

P 0�1

tjt (rt:T ) = CT (rt)
�
D (rt)D

T (rt)
��1

C (rt)

+P 0�1

tjt+1 (rt+1:T )

P 0�1

tjt (rt:T )m
0
tjt (rt:T ) = CT (rt)

�
D (rt)D

T (rt)
��1

� (yt �G (rt)ut) + P 0�1

tjt+1 (rt+1:T )m
0
tjt+1 (rt+1:T )

(4)

Proposition 3 For anyt = 2; :::; T � 1 we have1

p (rtjy1:T ; r�t) / prt�1rtprtrt+1N
�ey tjt�1 (r1:t) ; St (r1:t)�

� ��P tjt (r1:t)
��� 1

2

���P 0�1

tjt+1 (rt+1:T ) + P�1
tjt

(r1:t)
���� 1

2

� exp
�
� 1

2

h
mT

tjt (r1:t)P
0�1

tjt+1 (rt+1:T )m tjt (r1:t)

�2mT

tjt (r1:t)P
0�1

tjt+1 (rt+1:T )m
0
tjt+1 (rt+1:T )

� �m0
tjt+1 (rt+1:T )�m tjt (r1:t)

�
T

P 0�1

tjt+1 (rt+1:T )h
P 0�1

tjt+1 (rt+1:T ) + P�1
tjt (r1:t)

i�1
P 0�1

tjt+1 (rt+1:T )�
m0

tjt+1 (rt+1:T )�m tjt (r1:t)
���

(5)

where m tjt�1 (r1:t), P tjt�1 (r1:t), m tjt (r1:t), P tjt (r1:t),ey tjt�1 (r1:t) andSt (r1:t) are respectively the one-step ahead pre-
diction and covariance ofxt, the filtered estimate and covariance
of xt, the innovation at timet and the covariance of this innova-
tion, these quantities are given by the Kalman filter, (1)-(2) being
linear Gaussian untilt asr1:t is known. To sum up, the algorithm
proceeds as follows at iterationk.

Backward-Forward procedure

For t = T; : : : ; 1 compute and store P 0�1

tjt+1

�
r
(k�1)
t+1:T

�
and

P 0�1

tjt+1

�
r
(k�1)
t+1:T

�
m0

tjt+1

�
r
(k�1)
t+1:T

�
using (3)-(4).

For t = 1; : : : ; T
� For i = 1; : : : ; s, run one step-ahead the Kalman filter with

rt = i, store m tjt

�
r
(k)
1:t�1; rt = i

�
and P tjt

�
r
(k)
1:t�1; rt = i

�
,

compute up to a normalizing constant p
�
rt = ijy1:T ; r(k)�t

�
using (5).

� Sample r
(k)
t � p

�
rt = ijy1:T ; r(k)�t

�
and store only

m tjt

�
r
(k)
1:t�1; r

(k)
t

�
, P tjt

�
r1:t�1; r

(k)
t

�
.

Sampling fromp
�
x0:T jy1:T ; r(k)1:T

�
is realized using the efficient

forward filtering-backward sampling recursion described in [2].
The filtering step being realized when samplingr(k)1:T , it only re-
mains to perform the backward sampling step.

3.3. Convergence issues
It can be proved that the simulated Markov chain is uniformly ge-
ometrically ergodic [11] so a central limit theorem holds for the
estimatesr1:T andx0:T .

Proposition 4 Let ' : ST � R
(T+1)nx ! R and the estimate

'N
4
= 1

N

PN�1
k=0 '(r

(k)
1:T ;x

(k)
0:T ). If Ep( �jy1:T ) [j'(r1:T ;x0:T )j] <1 then

'N
a:s:! Ep( �jy1:T ) ['(r1:T ;x0:T )]

If Ep( �jy1:T )
�j'(r1:T ;x0:T )j2� < +1, then there exists� (')

such that
p
N
�
'N � Ep( �jy1:T ) ['(r1:T ;x0:T )]

�) N �
0; �2 (')

�

It is possible to easily improve the asymptotic variance of the
estimatesr1:T andx0:T using a Rao-Blackwellization method [7].

1If P 0
tjt+1

(rt+1:T ) exists then one can obtain a much simpler expres-

sion forp ( rtjy1:T ; r�t).



4. MMAP ESTIMATION OF R1:T

4.1. Algorithm
Let us introduce a positive sequencefk; k 2 Ng satisfyingk+1 �
k, limk!+1 k = +1. The algorithm to obtain the MMAP es-
timate ofr1:T is a simple modification of the previous algorithm.
Thus it has a computational complexityO (T ) at each iteration.

Stochastic algorithm to estimate the MMAP sequence ofr1:T

1. Initialization. Set randomly r(0)1:T .

2. Iteration k, k � 1

� For t = 1; : : : ; T , sample r
(k)
t � pk

�
rtjy1:T ; r(k)�t

�
.

wherepk
�
rtjy1:T ; r(k)�t

�
/
h
p
�
rtjy1:T ; r(k)�t

�ik
.

Remark 1 A deterministic version of this algorithm consists of

selectingr(k)t =argmax
f1;:::;sg

p
�
rtjy1:T ; r(k)�t

�
.

4.2. Convergence issues
The deterministic version of this algorithm converges towards (a
discrete equivalent of) a stationary point ofp (r1:T jy1:T ). The
stochastic version of it is nothing but a stochastic annealing algo-
rithm in discrete state space. The following result can be easily
obtained.

Proposition 5 There existC > 0 and" > 0 such that fork =

C ln (k + ") and for any initial sequencer(0)1:T

lim
i!+1

Pr
�
r
(i)
1:T 2M (r1:T )

�
= 1

whereM (r1:T ) is the set of MMAP estimates.

5. MMAP ESTIMATION OF X0:T

The algorithm presented in this part requires the following addi-
tional assumption thatB (i)BT (i) > 0 for all i 2 f1; : : : ; sg2.
We introduce a positive sequencefk; k 2 Ng satisfyingk+1 �
k, limk!+1 k = +1. The proposed algorithm proceeds as
follows.

Stochastic algorithm to estimate the MMAP sequence ofx0:T

1. Initialization. Set randomly x(0)0:T .

2. Iteration k, k � 1

� For t = 0; : : : ; T , sample x
(k)
t � pk

�
xtjy1:T ;x(k)�t

�
.

where pk
�
xtjy1:T ;x(k)�t

�
/

h
p
�
xtjy1:T ;x(k)�t

�ik
and

x
(k)
�t ,

�
x
(k)
0 ; : : : ; x

(k)
t�1; x

(k�1)
t+1 ; : : : ; x

(k�1)
T

�
.

Remark 2 A deterministic version of this algorithm consists of

selectingx(k)t =argmax
xt

p
�
xtjy1:T ;x(k)�t

�
.

2If B (i)BT (i) 6= 0, then the JMLS can be transformed to a new
system where the noise covariance matrix is positive definite.

5.1. Implementation issues
It is necessary to sample frompk

�
xtjy1:T ;x(k)�t

�
for any t. A

direct evaluation of these distributions has a complexityO
�
T 2
�
.

We develop here an algorithm whose complexity isO (T ). Condi-
tional uponx0:T , the system (1)-(2) is a standard hidden Markov
model (HMM) [10].

Lemma 6 For anyt = 2; :::; T � 2

p (y1:T ;x0:T ) = p (y1:t�1;x0:t�1) p (yt; xtjy1:t�1;x0:t�1)�Ps
i=1 p (yt+1:T ;xt+1:T jxt; rt = i) p (rt = ijy1:t;x0:t)

p (yt:T ;xt:T jxt�1; rt�1 = i) =
Ps

j=1 pij�
p (yt+1:T ;xt+1:T j yt; xt; rt = j) p (yt; xtj rt = j; xt�1)

(6)

Proposition 7 For anyt = 2; :::; T � 2 we have

xtj (y1:T ;x�T ) �
sX

i=1

sX
j=1

�t (i; j)N (mt (i; j) ; Pt (i; j)) (7)

where

P�1
t (i; j) =

�
B (i)BT (i)

��1
+ CT (i)

�
D (i)DT (i)

��1
C (i)

+AT (j)
�
B (j)BT (j)

��1
A (j)

mt (i; j) = Pt (i; j)
h�
B (i)BT (i)

��1
(A (i)xt�1 + F (i)ut)

+CT (i)
�
D (i)DT (i)

��1
(yt �G (i)ut)

+AT (j)
�
B (j)BT (j)

��1
(xt+1 � F (j)ut+1)

i
(8)

�t (i; j) =
hP

i;j e�t (i; j)
i�1 e�t (i; j) wheree�t (i; j) is given by

e�t (i; j) = p (yt+2:T ;xt+2:T j yt+1; xt+1; rt+1 = j) pij
�p (rt = ijy1:t�1;x0:t�1)N�1 (mt (i; j) ; Pt (i; j))
�N �

yt �G (i)ut; D (i)DT (i)
�

�N �
A (i)xt�1 + F (i)ut; B (i)BT (i)

�
�N �

xt+1 � F (j)ut+1; B (i)BT (i)
�

�N �
yt+1 � C (j)xt+1 �G (j) ut+1; D (j)DT (j)

�
(9)

To sample frompk (xtjy1:T ;x�T ) for t = 1; : : : ; T , the algo-
rithm proceeds as follows at iterationk:

Backward-Forward procedure

For t = T; : : : ; 1 for any rt�1 = 1; : : : ; s compute and store
p (yt:T ;xt:T j yt�1; xt�1; rt�1) using the backward recursion
of HMM models [10], see (6).
For t = 1; : : : ; T
� For i = 1; : : : ; s, run one step-ahead the HMM one-step
ahead predictor to obtain p (rt = ijy1:t�1;x0:t�1), compute

p
�
xtjy1:T ;x(k)�t

�
using (7) to (9).

� Sample x
(k)
t � pk

�
xtjy1:T ;x(k)�t

�
.

5.2. Convergence issues
The deterministic version of this algorithm converges towards a
stationary point ofp (x0:T jy1:T ). Convergence of the stochastic
annealing process in this continuous unbounded space framework
has not yet been proved and is under study.



6. APPLICATION TO DIGITAL COMMUNICATIONS
Code Division Multiple Access (CDMA) provides a means of sep-
arating the signals of multiple users transmitting simultaneously
and occupying the same bandwidth. The system performance is
greatly enhanced if the receiver employs some means of suppress-
ing narrowband interference prior to signal “despreading” [8]. A
widely used model for the sampled received signalyt consists of
the spread spectrum signalrt from N users, the narrowband in-
terferenceit and observation noisewt, the interfering signal being
obtained by passing white noise through an all pole filter, with both
poles atz = 0:99 that is

yt = rt + it + �wwt (10)

it = 1:98it�1 � 0:980it�2 + �eet (11)

wherewt
i:i:d:� N (0; 1) andet

i:i:d:� N (0; 1) are mutually inde-
pendent. The power of the received spread sprectrum signal for
each user was held constant with amplitudes�1, randomly se-
lected andrt was binomially distributed. The CDMA spread spec-
trum model (10) and (11) can be easily re-expressed as the JMLS
of (1) and (2), for the state vectorxt =

�
it it�1

�
T

andut = 1
for all t. In our simulation studies we considered a single user, with
�e = 0:03 and we applied the five algorithms (conditional mean,
D(deterministic)/S(stochastic) MMAP ofxt and rt) for increas-
ing observation noise. We present the Bit Error Rate (BER) for
these algorithms. To evaluate the BER fromE [rtjy1:T ], we setbrt = 1 if E [rtjy1:T ] > 0 and brt = �1 otherwise. To evaluate
the BER fromxMMAP

0:T , argmaxp (x0:T jy1:T ), we substract
xMMAP
0:T from the observations then setbrt = 1 if the residual sig-

nal is positive andbrt = �1 otherwise. The algorithms were run on
400 points, and averaged over 100 independent runs. In all cases,
the algorithms were initialized randomly. In the example, we dis-
card the firstN0 = 20 samples simulated by MCMC algorithm
to estimateE [rtjy1:T ][11]. Then taking into account the follow-
ing N = 50 iterations of the MCMC algorithm has appear to be
sufficient, the estimates being stabilized. The deterministic opti-
mization algorithms are iterated until convergence. Convergence
occurs after no more than5 iterations in all experiments. To use the
stochastic optimization algorithms, we implement a linear cooling
schedulek = �k + � as it is usually done in practice for a num-
berN = 50 of iterations with1 = 1 andN = 10. Then the
final iterations are performed using the deterministic algorithms.
The results are displayed in the following table. The stochastic al-
gorithms appear of course much less sensitive to initialization than
their deterministic counterparts. They are of great interest at low
signal to noise ratio.

�w E [r1:T jy1:T ] D/S MMAP r1:T D/S MMAP x0:T
0:5 4:02 4:61=4:37 5:36=4:82
0:6 5:67 6:82=6:01 7:37=6:39
0:7 9:27 12:23=9:44 13:68=9:85
0:8 12:06 17:32=12:32 19:05=13:01
0:9 15:68 22:11=15:94 24:03=16:06
1:0 18:42 27:32=19:01 30:32=21:08

7. DISCUSSION
The deterministic strategy to obtain the MMAP estimate ofr1:T
has been developed in [9] but the proposed popular SMLR algo-
rithm has a complexityO

�
T 2
�
. In the case of MA models [1] and

in a state-space framework [3], algorithms of complexityO (T )

have been proposed. However, the algorithm in [3] is based on an
approximate initialization of a backward recursion and assumes
thatA (i) is regular for anyi. Our algorithm has a similar com-
plexity but it does not rely on any approximation and makes no
assumption onA (i). Furthermore, its range of applicability is
wider than the algorithms presented in [5], [8] as the assumption
B (i)BT (i) > 0 is not necessary. In the case wherert is an
independent sequence, the stochastic version of this algorithm is
ensured to have a lower maximum correlation than the algorithm
described in [5] according to [7, Th. 5.1]. The deterministic ver-
sion is ensured to have a better asymptotic convergence rate than
the EM algorithm in [8]. Indeed it is a simple coordinate ascent
method that limits the amount of missing data [6]. The same re-
mark holds for the deterministic version of the proposed algorithm
to maximizep (x0:T jy1:T ) compared to the EM algorithm pre-
sented in [8]. To sum up, the algorithms proposed here are of great
interest as they have a computational complexity similar to the
most recent algorithms but better theoretical and practical prop-
erties.
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