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ABSTRACT
A new digital heterodyne filter is proposed that allow a
prototype IIR or FIR filter to be shifted through the entire
range of digital frequencies from DC to the Nyquist
frequency.  The unique properties of this new tunable filter are
the range of tunability and the fact that all images created by
the heterodyne process are cancelled.  The proposed
heterodyne filter is suitable both as a tunable filter and for use
with standard adaptive algorithms to design adaptive digital
filters --- especially adaptive notch filters.

1. INTRODUCTION

Digital Signal Processing has become a very important
component of modern communications systems[1][2][3][4].
One very important issue is the removal of narrow-band
interference from broad band BPSK and QPSK signals[5][6].
Recently several adaptive filter schemes have had success in
the area of narrow-band interference attenuation[7][8].  In
addition, narrow-band interference attenuation has been
applied to electrical interference caused by mechanical
resonance in control systems[9][10] using an adaptive lattice
structure[8].  All of these applications point to the need for
easily tunable filters that can be used to adjust a notch in
order to attenuate some narrow-band interference.  Recently a
remarkable filter based upon using a heterodyne process to
tune the filter was introduced [11].  In this paper, we
introduce a modification to the filter previously proposed that
drastically enhances the tunability of the filter and allows for a
much more general set of base filters to be used in the tuning
process.  Most importantly, the new heterodyne filter
proposed in this paper completely cancel out all of the filter
images created by the heterodyne process.

2. DIGITAL HETERODYNE FILTER

2.1 Basic Concept

The basic idea of this research is to develop a general-purpose
adaptive IIR filter that can adapt a filter by translation in the
digital domain.  To accomplish this a general structure needs
to be developed which allows for the translation to occur.

Direct translation without distortion of the amplitude and
phase properties of the filter is not an easy task.

Translation of a filter can be achieved through a number of
methods.  The most direct approach is to compute the taps of
the IIR filter to each new position.  However, this is
computationally undesirable.  Further, small errors in the
calculation could lead to some modes of the filter being
unstable and unusable.  Therefore, another solution must be
found.

Our approach is to move the filter by moving the signal.  The
signal is translated by modulation with a carrier frequency in
the digital domain to the center frequency of the filter.  It is
then filtered and retranslated back to its original position.  The
apparent effect is that the filter has been translated.  Then a
set of simple to design filters could be used in this translation
filter to give the desired tunable effect.

2.2 Heterodyne Filter Block

In an early paper, we presented a adaptive version of a first
order and second order IIR filter in the basic digital
heterodyne structure[11].  Unfortunately, the original structure
presented only maintains frequency characteristics for a
relatively small number of IIR filters.  Therefore, it is
necessary to expand the original basic structure into one that
works for all IIR filters.

Figure 1 is the basic structure used in the heterodyne filter.  In
this filter, stepping through two lookup tables containing sine
and cosine generates a carrier frequency.  This results in a
linear oscillator whose frequency is fixed by size of the step.

Figure 1. Basic heterodyne filter block
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Nature mathematical reductions can be made to this table.
Two identical copies of a fixed frequency IIR filter are used to
process two out of phase copies of the signal generated
through quadrature.  These signals are then recombined using
quadrature to form two outputs.

The outputs of this structure were derived assuming that the
carrier frequency was constant and are given in the frequency
domain as equation 1 and equation 2.

  HP(e
jω,ω0) = P(ejω)/X(ejω) = 1/2 [Hf(e

j(ω-ωo)) + Hf(e
j(ω+ωo))] 

(1)

  HQ(ejω,ω0) = Q(ejω)/X(ejω) = 1/2j [Hf(e
j(ω+ωo)) - Hf(e

j(ω-ωo))]
(2)

The output P of this filter is therefore the sum of a filter
translated up and down by the center frequency.  In the case of
a bandpass, this is the classic result from noise analysis.

However, this result has a number of problems in the digital
domain.  It is not usable for general-purpose notch filter,
because the pass band from each of the two separate notches
that result in the output will interfere with each other.  This
means the maximum depth of any notch filter using this will
be 3dB.  There are some filters in which a simple FIR filter
can be brought around this filter to compensate for this
distortion, but that is not a general result.

Band-pass operation of this filter is not effected by this
problem.  When a high-pass or low-pass filter with a
sufficiently small pass band is placed in this filter the
resulting output is a band-pass filter with twice the
bandwidth.

When used in a digital spectrum other effects take place.
While the two pass-bands are widely separated they appear
largely distinct with the amplitude and frequency response
approximately equal to original fixed filter.  Thus this forms a
reasonable approximation of a tunable band-pass filter.

However, when the carrier frequency is within the size of the
pass-band of 0 or π, the pass-bands will interfere with each
other resulting in a large distortion of both the phase and
magnitude responses.  Although acceptable for some
applications, it will prevent this filter form being used in a
adaptive loop.

2.3 General Heterodyne Filter

To generalize the filter to work for an arbitrary fixed filter it is
necessary to develop a filter with an equation closer to
equation 3.  This would then result in the multiplication of the
amplitude response at all possible positions of the filter and
the addition of the phase responses.

  H(ejω,ωo) = Hf(e
j(ω+ωo)) Hf(e

j(ω-ωo)) (3)

Figure 2 shows a structure, which achieves exactly this.
Three of the digital heterodyne blocks are cascaded to from a
single output with the desired frequency response. The first
full heterodyne filter block generates both outputs p[n] and
q[n].  Each of the outputs is then run through another
heterodyne filter block.  The outputs generated from HPHQ and
HPHQ are disregarded and the corresponding hardware has
been removed.

The output of this filter can easily be verified as matching the
desired filter response.  In the frequency domain, the output of
the filter is the difference between two HP and two HQ shown
in equation 4.

  H(ejω,ω0) = HP(e
jω,ω0) HP(e

jω,ω0) - HQ(e
jω,ω0) HQ(e

jω,ω0)   (4)

Plugging in terms and reducing this equation yields the
desired result, equation 3, without the need of an additional
scaling factor.  This result will be verified for a number of
classical filters in the experiment section.

The total hardware cost of this design over a simple fixed
design is 6 times the fixed filter, a linear digital oscillator,

Figure 2.  Full digital heterodyne filter



H f

H f

cos ω 0n

sin ω 0n

x[n]

cos ω 0n

cos ω 0n

sin ω 0n

sin ω 0n

A

H f

H f

cos ω 0n

sin ω 0n

cos ω 0n

cos ω 0n

sin ω 0n

sin ω 0n

y[n]

and 14 variable multipliers.  This may be too high for
practical use in a tunable filter, so additional reductions need
to be made later.

2.4 Fixed Filter Selection

With a workable filter translation system constructed, it is
now possible to predict the available modes of operation to
give the desired output.   The primary mode of operation for
this filter is that of a notch filter.

If a reasonably narrow high-pass or low-pass filter is used as
a fixed filter in this system the resulting output will be a
notch.  A digital high-pass filter has its stop band centered
about 0 by definition, so once translated its stop band will be
centered about the carrier frequency.  This makes for a nice
notch filter with a linearly controllable center frequency.  The
bandwidth of the stop band of a high-pass is measured from 0
to its pass-band edge.  However, the bandwidth of a notch is
measured across the entire stop band, so the bandwidth of the
resulting notch is double.  In truth, we just changed
definitions, but now the order of the filter is double.

Further, this resulting notch is completely stable regardless of
the tuning of the filter.  Once the modulation frequency passes
Nyquist, it rolls over at appears to transition back from π to 0.
The center of the notch follows exactly this effect.  Assuming
the internal filter is BIBO stable for all possible inputs and
that the quadrature stages merely alters the input and output,
the resulting notch filter is BIBO stable for all possible
tunings.  Coupled with the nature modulus effects of discrete
time domain, this makes the filter stable at all times.
Therefore, no limiters are required.

A similar mode of operation occurs if a low-pass filter is used
with a small stop-band about π.  This mode has all of the
properties of the earlier one if π is added to the modulation
frequency.

Another interesting mode of operation results when a high-
pass or low-pass filter is used as the fixed frequency filter
which has a cut off frequency at π/2.  In this mode, the output
is a tunable high-pass or low-pass filter.  For the case of a
fixed frequency high-pass filter, the output is a high-pass filter
with a cut off frequency can be moved from π/2 to π
corresponding to a modulation frequency of 0 to π/2.  When
the modulation frequency reaches π/2 a pass band appears
about DC.  This opens up to a low-pass filter which is tunable
from DC to π/2 when the modulation frequency approaches π.
Similar effects result from the use of a fixed frequency low-
pass filter.

This filter has no modes that correspond to a band-pass output
aside from a few special case notch filters in which the phase
response across the filter permits subtraction of the input.
Although these modes do exist, they can not be tailored in the
same way that notch, low-pass and high-pass can.

2.5 Structural Reductions

The first heterodyne stage split the signal into two out of
phase versions.  This was all that was needed to cancel
images resulting from heterodyned images of the input
traveling twice the carrier frequency.  A derivation of this is
presented in our last paper[11].  While at the same time, the
general filter required four separate channels to achieve the
same result.  If only two channels are necessary for proper
reconstruction then there must be some redundancy in these
new stages.

Indeed, half the hardware in the last stage is redundant. By
pushing the negative from the Q channel back through the
multipliers, the second set of multipliers can be combined
thus reducing the reconstruction to two channels.  This is
possible because although the heterodyne is not LTI, it is
linear.

While the overall transfer function of this filter is LTI, the
filter is not LTI in most stages.  Except when measured from
the outside or around the fixed frequency filter, the internal
signals are linear only.  However, with the recombination of
the quadrature stage, we now have two identical LTI filters
processing separate inputs then summing the output.
Summing the inputs then applying the LTI filter can eliminate
half of the filters in this stage.

The total cost of the design is now 4 times the fixed filter, a
linear digital oscillator, and 12 multipliers.  Although no
further simplifications are possible, the filter may be arranged
in such way that it become fully symmetric.  This resulting
filter is shown in Figure 3.

In this figure, a single matrix A, equation 5, containing ones
and zeros represents the interconnections between the two
stages.  This is implemented with adders.

A =

−

−



















1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

(5)

Figure 3.  New tunable heterodyne filter



This circuit can be tuned smoothly across the entire range
from DC to the Nyquist frequency by simply adjusting the
heterodyne frequency.  Aside from use as a tunable filter, it
can also can be used to construct an adaptive filter by placing
an LMS type algorithm in to control the heterodyne frequency.

3. EXPERIMENTAL RESULTS

3.1 Classical filters

Since the most practical application of this tunable notch filter
is to create a notch from a classical IIR high-pass filter with
desired amplitude and phase characteristics, it was necessary
to verify the filter by inserting the “classic” IIR filters in to the
structure and verify the outputs.

A number of classical filters where designed and tested in the
notch mode of the digital heterodyne filter.  A Butterworth,
Chebychev type 1, Chebyshev type 2, and elliptical were each
used.  Each were designed to be of 8th order with a bandwidth
of π/16.  The desired floor for the elliptical and Chebychev
were selected at 40 dB and a ripple of 0.5 dB.  These filters
were then probed with a digital impulse and the resulting
outputs measured and transformed.

The resulting outputs were all notches with a bandwidth of
π/8.  Each was centered exactly at the modulation frequency.
Thus the results were exactly as expected.

There were some effects apparent in the outputs of some note.
Both the Chebychev and elliptical filters exhibited changes in
the magnitude of the ripple in the pass band.  At worst, the
ripple increased to twice the original ripple of 0.5 dB.  This
effect results from interactions of the two frequency responses.
The worst case occurred when the modulation frequency was
zero with a ripple of 1 dB.  For designs, it is recommended
that the ripple in the pass band of the fixed frequency filter be
designed to be one half of the desired ripple in the tunable
filter.

3.2 Tunable Lowpass

To test the usability of the second mode of operation as a
tunable low-pass filter, a 16th order low-pass Butterworth
filter was placed in the heterodyne filter.  The output was
measure by probing with an impulse.  Measurements were
taken at modulation frequencies ranging from 0 to 0.49π.

The resulting output was a low-pass filter with tunable cutoff
frequency from π/2 to 0.  Some peaking about the Nyquist
frequency was observed at a modulation frequency of 0.4π
that increased to –10 dB by 0.49π.  A higher modulation
frequency transforms the filter into a tunable high-pass filter
as expected.

4. SUMMARY
In this paper, we have proposed a new heterodyne digital filter
that allows continuous tuning of a base-band prototype filter
over a range from DC to the Nyquist frequency.  The

heterodyne frequency is used to translate the center of the
filter over the range of interest.  The proposed structure offers
the significant advantage that all of the images created by the
heterodyne process are eliminated.  Hence the filter seems to
be unusually suited to applications where a tunable filter or an
adaptive filter are needed without changes in bandwidth.  In
particular the structure should be well suited to applications
that require the attenuation of narrow-band interference.
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