
MAKING MUSIC WITH MATLAB:
AN ELECTRONIC MUSIC SYNTHESIS COURSE FOR

ENGINEERING STUDENTS
Ed Doering

Department of Electrical and Computer Engineering
Rose-Hulman Institute of Technology

5500 Wabash Avenue
Terre Haute, IN 47803-3999, USA

ABSTRACT

An elective course in electronic music synthesis has been
developed for electrical and computer engineering students.
The course provides an interesting way to integrate and apply
DSP and computer manipulation concepts studied in previous
courses, and extends student understanding of more advanced
concepts such as time-evolving spectra. MATLAB is a standard
platform used in the signals and DSP courses, so MATLAB
forms the primary tool for converting algorithmic descriptions
of waveforms into sound. The paper outlines course topics and
methods, includes a detailed example of pedagogy, and presents
assessment results. Example MATLAB code, graphics, and
sound clips are available on-line at http://www.rose-
hulman.edu/~doering/icassp99.

1. INTRODUCTION

I have developed an elective course in electronic music synthesis
for electrical and computer engineering students. The course
offers students an interesting way to tie together the various
signal processing and computer manipulation concepts they have
learned over the previous 2-3 years, extends their understanding
of time-evolving spectra, and helps them to develop an
appreciation for significant musical algorithms, composers, and,
musical instruments. Students who meet the course
prerequisites have already developed some proficiency in
MATLAB, so MATLAB serves as an appropriate platform to
implement synthesis algorithms and generate sound.

Most electronic music courses are offered by a music
department, have a primary emphasis on music theory and
artistic expression, and use composition-oriented software tools.
The new course described here, on the other hand, is oriented to
engineering students and focuses on developing a deeper
understanding of waveforms, spectra, and low-level computer
control of instruments. The course I have developed
complements any DSP course sequence, and requires only a
modest investment in additional hardware and software.

This paper will describe my approach to developing and
teaching the course, and will include a detailed pedagogy.
Course assessment results will be presented as well. A web-
based supplement to this paper (http://www.rose-
hulman.edu/~doering/icassp99) will provide MATLAB code
samples and sound clips to extend the discussion in this paper.

2. APPROACH

2.1 Course Topics

The course topics follow from a required text by Moore [1] and
four reference texts [2-5]. The course topics and goals are:

• Analog Synthesis -- Students will understand
terminology and concepts associated with analog
synthesis patches;

• MIDI -- Students will understand MIDI events and
standard MIDI files with sufficient depth to be able to
use MATLAB to construct their own MIDI files;

• Modulation Synthesis -- Students will understand how
AM and FM can be applied in audio frequency range,
and will understand the spectral characteristics of each;

• Additive Synthesis -- Students will understand issues
associated with constructing waveforms by adding
time-varying partials;

• Subtractive Synthesis -- Students will understand
techniques for filtering a white noise spectrum to
produce desired time-varying waveforms, and will
understand applications of linear prediction to vocal
tract modelling;

• Sound Spatialization -- Students will understand delay
techniques for locating a virtual sound source, and will
understand filtering techniques used to simulate natural
reverberation.

2.2 Tools and Resources

The class is taught in a multimedia-capable classroom using the
following hardware and software:

• Laptop computer -- Drives the dual-projector video system
and ceiling-mounted audio system;

• Digital synthesizer -- The Roland XP-10 serves as an
inexpensive and portable source of real-time signals and
MIDI data streams;

• MATLAB with Signal Processing Toolbox
• Real-time audio spectrum analyzer -- “Spectra Plus” by

Pioneer Hill Software (http://www.telebyte.com/pioneer)
requires only a soundcard, and produces time-domain, 1-D
spectrum, and waterfall displays;

• Real-time MIDI event analyzer -- “Midi-OX” by Jamie
O'Connell

(http://www.channel1.com/users/jamieo/index.html)
decodes and displays real-time MIDI events generated
either by the Roland keyboard or by the Windows 95
Media Player;

• Waveform editor -- “CoolEdit” by Syntrillium Software
Corporation (http://www.syntrillium.com) efficiently
handles large soundfiles, displays time-domain and
frequency-domain data, and can add audio special effects;

• Audio CDs -- A small library of about 20 audio CDs was
purchased to provide examples of how the algorithms are
used in musical compositions. I used Chadabe’s history of
electronic synthesis [2] to find composition titles that
illustrate specific synthesis techniques.

2.3 Course Structure

I began most class days by playing a musical excerpt relevant to
that day’s topic. The music made a nice transition into the class,
and also gave me time to set up my equipment. I used the
synthesizer and real-time spectrum analyzer to motivate
discussion about time-varying harmonics and relationships
between perceived timbre and signal spectrum. I used MATLAB
to implement algorithms in class to explore effects of parameter
changes on sounds, waveforms, and spectra.

Seven “miniprojects” gave students practice in implementing
algorithms and generating their own sounds. A multi-week
course project gave pairs of students a chance to explore
advanced topics in more detail.

2.4 Pedagogy Example

The Karplus-Strong plucked string algorithm [6] will be
described in detail as an example of classroom pedagogy. The
unit begins with the signal flow diagram of the Karplus-Strong
algorithm (Fig. 1). The algorithm starts with the delay line
elements set to zero. A zero-mean white noise burst of the same
length as the delay line initiates the output waveform. The noise
burst circulates repeatedly through the feedback path, each time
losing some high frequency energy to the lowpass filter (LPF).
Thus, the overall output waveform begins as a high amplitude
wideband signal, then exponentially decreases in amplitude and
simultaneously converges to a narrowband signal. The audible
result sounds remarkably life-like, and is achieved at relatively
low computational cost.

The students delved into detailed operation of the algorithm to
gain more in-depth understanding. Given that the lowpass filter
is a two-point averager:

2

)1()(
)(

−+= nxnx
ny ,

(1)

and that the all-pass filter (APF) is defined as:

)1()1()()(−−−+= nCynxnCxny , (2)

the overall loop transit time which sets the oscillation frequency
of the output waveform is derived as:

δ++
=

2/1N

f
f s

o ,
(3)

where fs is the sampling frequency in Hz, N is the length of the
delay line, and δ is a variable fractional delay introduced by
the APF (the LPF introduces a fixed delay of 1/2). The delay
line and the LPF set the coarse frequency, and the APF fine
tunes the frequency. The APF coefficient is calculated from the

fractional delay as () ()δδ +−= 11C .

To build the algorithm in MATLAB, students continued by
deriving the z-domain expression for the block diagram of Fig. 1
as:

() ()211

1

2
1

2
1

2
1

1
)(

+−+−−−

−

−

 +−−+

+=
NNN zz

C
z

C
Cz

Cz
zH

(4)

and converting this equation into suitable a and b coefficients
for the MATLAB ‘filter’ function call:

a = [1 C zeros(1,N-2) -C/2 -(1+C)/2 -1/2]

b = [1 C]

The students could then generate single note waveforms and
listen to the effects of parameter changes.

Listening to an algorithm in a musical context reveals much
more information about the quality of the algorithm. To make
this possible within the MATLAB environment, I wrote a set of
MATLAB .m files that extract the note-on / note-off events and
timing information from a standard MIDI file (.mid format). The
note events are input to a MATLAB “instrument,” a function
which accepts note velocity, pitch, and duration as input
parameters and returns a waveform. MIDI note velocity, an

Σx(n) y(n)

z-N

LPF

Figure 1. Block diagram of Karplus-Strong plucked
string algorithm.

APF

integer in the range 0 to 127, is mapped to waveform amplitude.
The MIDI note number is converted to frequency as follows:

12/)69(2)440(−= nf , (5)

where n is the MIDI note number (0 ≤ n ≤ 127) and f is the
corresponding frequency in Hz. Finally, the single-note
waveforms returned by the “instrument” function are
superimposed to produce the final composite waveform. Thus
the students can use Eq. 4 as the basis of a MATLAB

instrument, and play it with a MIDI file derived from a keyboard
instrument, e.g., using chords, chromatic runs, etc. The
contribution of the APF becomes immediately apparent this
way, since omitting it causes the instrument to sound “sour” and
out-of-tune.

We concluded our study by listening to David Jaffe’s Silicon
Valley Breakdown [7], a well-known artistic application of the
of the Karplus-Strong algorithm.

3. RESULTS
An end-of-term student survey was developed to assess the
effectiveness of the course elements. Twenty questions were
developed to which the student would respond “strongly agree,”
“agree,” “weakly agree,” “weakly disagree,” “disagree”, and

“strongly disagree.” Fig. 2 shows the student response
histograms for each question:

1. The course helped me to better understand the relationship
between frequency-domain concepts and time-domain
concepts;

2. I am more confident in my ability to work with binary
computer files (e.g., bit manipulations, file read/write);

3. I am now more skilled at implementing my ideas on a
computer;

4. I have a better understanding of how DSP can be applied
in real systems;

5. I have developed an increased interest in music;
6. I spend more time thinking about what I hear;
7. I had fun in this course;
8. It was helpful to see the details of MATLAB coding

techniques when typed “on the fly” in class;
9. The course topics were not interesting;
10. Implementing the concepts on the computer helped me to

fully understand the concepts;
11. This was a useful course;
12. I have a better understanding of digital filtering concepts;
13. It was important to be able to hear examples of the various

techniques while discussing them in class;
14. The musical examples (CDs at the beginning of selected

classes) stimulated my interest in the material;

0

50

100
1 2 3 4 5

0

50

100
6 7 8 9 10

0

50

100
11 12 13 14 15

A A a d D D
0

50

100
16

A A a d D D

17

A A a d D D

18

A A a d D D

19

A A a d D D

20

Figure 2. Student survey results for assessment questions listed in Sec. 2.5. “A” denotes “strongly
agree,” “A” denotes “agree,” etc. Vertical scale is percentage response in each category.

15. I would recommend this course to my friends;
16. The real-time spectrum displays (“waterfall display”) of

musical sounds helped me to relate what I hear to the time-
varying spectrum of the sound;

17. The miniprojects were effective at helping me to practice
the concepts;

18. MATLAB is an effective way for me to implement the
concepts learned in class;

19. My MATLAB skills have improved as a result of this
course;

20. The miniprojects were effective at helping me to
understand the concepts.

The student response to all of the survey questions was quite
positive (only one or two “disagree”-type responses for each
question). The strongest responses, defined as majority of
student responding with the “strongly agree” statement,
occurred on questions 8 (seeing MATLAB details in class), 13
(important to hear examples in class), 18 (MATLAB is effective
tool for the course), and 19 (MATLAB skills improved as a
result of class). From these results I conclude that immersing the
students in visual and audible information was effective, and
that MATLAB is a good platform for an engineering-based
music synthesis course.

4. SUMMARY

A new elective course in electronic music synthesis for
engineering students has been presented. The course focuses on
applying DSP concepts to the design and implementation of
musical waveforms, and uses MATLAB as a primary tool for
implementing algorithms and producing sound. A minimal
additional investment of hardware and software is required to
support the course. The course was assessed by student survey,
and the survey response showed that the course structure and
methods were effective.

5. REFERENCES

[1] Moore F.R. Elements of Computer Music. Prentice-Hall,,
Englewood Cliffs, NJ, 1990.

[2] Chadabe J. Electric Sound: The Past and Promise of
Electronic Music. Prentice-Hall, Englewood Cliffs, NJ,
1997.

[3] Roads C. The Computer Music Tutorial, MIT Press,
Cambridge, MA, 1996.

[4] Dodge C. and Jerse T.A., Computer Music : Synthesis,
Composition, and Performance, Prentice-Hall, Englewood
Cliffs, NJ, 1997.

[5] Rumsey, F. MIDI Systems and Control, Focal Press, [city]
1994.

[6] Karplus R. and Strong A. “Digital Synthesis of Plucked
String and Drum Timbres”. Computer Music Journal,
7(2):43-55, 1983.

[7] Jaffe D. “Silicon Valley Breakdown” (audio CD). Track 11
on XX1st Century Mandolin, Well-Tempered Productions,
Berkeley, CA.

