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Abstract

A decision feedback blind symbol estimation algorithm based
on the least squares smoothing approach is proposed for
single-input multiple-output finite impulse response systems.
With the finite alphabet property, the input signal is esti-
mated based on the past detected symbols and the least
squares smoothing error of the observation. Implemented
both time and order recursively, the proposed algorithm is
adaptive to channel variation and has low complexity both
in computation and in VLSI implementation. Based on a de-
terministic model, this algorithm has the finite sample con-
vergence property, i.e., the input signal can be perfectly de-
tected with a small set of data samples in the absence of
noise

1. INTRODUCTION

One important requirement on blind channel equalization
is the convergence rate. Methods based on the statistical
modeling, such as the constant modulus algorithm [2], the
subspace-based MMSE detector [1], rely on the convergence
of statistics. Therefore, a large set of data samples are re-
quired in these methods. Deterministic algorithms, on the
other hand, has thefinite sample convergenceproperty,i.e.,
the channel or the input symbols can be perfectly estimated
using a finite number of samples in the absence of noise.
However, the focus of most deterministic algorithms, such
as the subspace algorithm (SS) [5], the cross relation (CR)
algorithm [8], the joint order detection and channel estima-
tion algorithm (J-LSS) [6], and the adaptive least squares
smoothing channel estimation algorithm (A-LSS) [9] has
been on the channel identification. The input signal is es-
timated in the second step based on the identified channel.
Perhaps the main drawback of this two-step approach to
equalization is the performance degradation of the symbol
detector when the estimated channel is not accurate.

Liu and Xu [4], Van der Veenet al. [7] proposed subspace-
based direct symbol estimation algorithms. By exploiting
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the connection between the input and output data structures,
input symbols can be perfectly estimated from a finite num-
ber of output samples. However, relying on the singular
value decomposition of the data matrix, these algorithms
have high computation cost and do not have an efficient
adaptive implementation.

In this paper, we propose a decision feedback blind sym-
bol estimation algorithm that is fast convergent, adaptive
and computationally efficient. This algorithm has two com-
ponents: a least squares smoother applied to the observation
process and a decision feedback detector that takes advan-
tage of the finite alphabet structure of the input signal. The
smoothing error of the input signal is obtained from the ob-
servation by the least squares smoother based on the isomor-
phic relation between the input and output subspaces. The
input signal is then detected from its smoothing error by
the decision feedback detector. It turns out that the smooth-
ing error of the input signal has no channel-induced inter-
symbol interference. Therefore, the knowledge of channel
is no longer necessary for the decision feedback technique.
This feature distinguishs the proposed algorithm from the
non-blind decision feedback equalizer. Like all determin-
istic methods, the proposed algorithm has the finite sam-
ple convergence property. Furthermore, this least squares
smoothing approach (LSS) naturely leads to an order and
time adaptive implementation without matrix operations. The
efficient adaptive implementation enables the proposed al-
gorithm to track a wide range of channel variation, both in
parameters and in length. Also, the low computation com-
plexity and regular structure of this algorithm make it a good
candidate for VLSI implementation.

Notations used in this paper are mostly standard. Upper-
and lower-case bold letters denote matrices and vectors, re-
spectively with(�)t and(�)0 denoting transpose and Hermi-
tian operations. Given a matrixA,RfAg is the range space
of A. For a set of vectorsx1; � � � ;xn, spfx1; � � � ;xng de-
notes the linear subspace spanned byx1; � � � ;xn. For a vec-

torx and a linear subspaceX , �xjX
�
= argminz2X jjx�zjj2

is the orthogonal projection ofx ontoX , and~xjX
�
= x��xjX

is its projection error. Finally,jj � jj denotes the 2-norm.



2. PROBLEM STATEMENT

Considered in this paper is the estimation of the input signal
fs(t)g to a single-inputP -output linear system given by

x(t) =

LX
i=0

hist�i; y(t) = x(t) + n(t); t = 0; � � � ; (1)

wherex(t) = [x(1)(t); � � � ; x(P )(t)]t is the output ofP sub-
channels,n(t) is the additive noise,y(t) is the received
signal, andfhtg is the channel impulse response. Given

N samples of the system input and output, definest
�
=

[s(t); � � � ; s(t�N + 1)]t, xt
�
= [x(t); � � � ;x(t�N + 1)]t.

The input and output subspaces spanned byp consecutive
vectors are then defined as

St;p
�
= spfst; � � � ; st�p+1g; Xt;p

�
= spfxt; � � � ;xt�p+1g:

(2)
Note that forp < 0, the subspaces are spanned byp con-
secutive future data vectors. Our goal is to estimatest from
yt.

Two assumptions are made in this paper.

� A1: Channel Diversity:The subchannel transfer func-
tions do not share common zeros,i.e., , fhi(z)g are
co-prime.

The following property results directly from A1.

Property 1 Under A1, there exists a (smallest)w0 � L
P�1

such that for anyw � w0, we have the isomorphic relation
between the input and output subspaces:Xt;w = St;w+L.

The second assumption is about the linear complexity of
the input sequence.

� A2: Linear Complexity:The input sequencefs(t)g
has linear complexity greater than2w0 + 2L.

.

3. THE LEAST SQUARES SMOOTHING

The isomorphism between the input and output subspaces
leads to a specific relation between the smoothing error of
the input and the smoothing error of the output, as given in
the following theorem.

Theorem 1 ConsiderL + 1 consecutive output data vec-
tors xt+L; � � � ;xt and the input data vectorst. For w �

w0, define the input and the output subspace asZs(t)
�
=

St�1;w+L[St+1;�(w+L) andZx(t)
�
= Xt�1;w[Xt+L+1;�w,

respectively. We have the following relation between the

smoothing error ofxt+L; � � � ;xt and the smoothing error
of st:

E
�
= [~xt+LjZx(t); � � � ; ~xtjZx(t)] (3)

= ~stjZs(t)[h
t
L; � � � ;h

t
0]: (4)

The above theorem results from the isomorphism be-
tween the input and output subspaces:Zs(t) = Zx(t). De-
tailed proof was given in [9] [6]. This theorem implies that
the smoothing error~stjZs(t) of the input can be obtained (up
to a scalaring factor) from the smoothing errorE of the out-
put without knowing the input sequence. It is also important
to note that~stjZs(t) is independent of the channel,i.e., the
least squears smoother removes the channel effect. The fol-
lowing question arises:can we obtain the input signal from
its smoothing error?An answer to this question is presented
in Section 4.

4. SYMBOL DETECTION FROM THE
SMOOTHING ERROR

4.1. The Basic Idea

From (4) we can see each column inE is an estimate of
~stjZs(t). For an uncorrelated input sequence,~stjZs(t) con-
verges tost whenN goes to infinity. However, in this
casest can only be perfectly estimated with infinite num-
ber of samples even when there is no noise. Can we obtain
st from ~stjZs(t) while preserving the finite sample conver-
gence property? The finite alphabet structure of the input
signal can help us to answer this question.

Suppose that the input symbols belong to a finite alpha-
betA = fa1; � � � ; aMg. One way to obtainst is to search
for a vector whose elements belong toA to fit ~stjZs(t). This
approach involves the computation ofMN projections, which
is obviously impractical even for a small set of data sam-
ples. However, if we have detected all the input symbols
up to timet � 1, then only one symbol inst needs to be
determined. Therefore, to detect the current symbol, only
M projection errors needs to be calculated and compared
with ~stjZs(t). Furthermore, these projection errors can be
calculated both time and order recursively, as presented in
the next section.

4.2. Adaptive Decision Feedback Symbol Estimation

For simplicity and without loss of generality, here we only
consider obtaining~stjZs(t) from one observation vector, for

example,y(1)t .
To obtain~stjZs(t), the output subspaceZx(t) is esti-

mated from the observation:̂Zx(t)
�
= RfZ(t)g with Z(t)



defined as

0
B@

y(0)t � � � y(w � 1)t y(w + L+ 1)t � � � y(2w + L)t

y(1)t � � � y(w)t y(w + L+ 2)t � � � y(2w + L+ 1)t

...
...

...
...

y(t � w)t � � � y(t � 1)t y(t + L+ 1)t � � � y(t+ L+w)t

1
CA ;

(5)
wherew is the smoothing order satisfying Property 1. Note
that the knowledge of the channel order is required in con-
structingZ(t). The extension to the unknown order case is
discussed in [10]. Define

y
(1)
t

�
= [y(1)(w); y(1)(w + 1); � � � ; y(1)(t)]t (6)

s
i
t

�
= [ŝ(w); ŝ(w + 1); � � � ; ŝ(t� 1); ai]t; i = 1; � � � ;M; (7)

wheresit contains the past detected symbols and the ten-
tative guessai of the current symbol. In order to obtain
ŝ(t), the projection error ofy(1)t andsit(i = 1; � � � ;M) onto
Ẑx(t) needs to be calculated. Suppose that at timet, we
have computed the projection errors~y

(1)

tjẐx(t)
and~si

tjẐx(t)
(i =

1; � � � ;M). The current symbol is then detected by choosing
the vector~sk

tjẐx(t)
(1 � k � M) that contains the smallest

angle with~y(1)
tjẐx(t)

, i.e., ŝ(t) = ak. With the definition

ŝt
�
= [ŝ(w); ŝ(w + 1); � � � ; ŝ(t)]t; (8)

it is straightforward that~̂stjẐx(t)
= ~sk

tjẐx(t)
which has been

calculated. Now consider at timet + 1 when a new obser-
vationy(t + L + w + 1) becomes available. ThenZ(t +
1) is constructed by enhancingZ(t) with one row. Sim-
ilarly, y(1)t+1 = [y

(1)t
t ; y(1)(t + 1)]t, sit+1 = [ŝtt; a

i]t(i =
1; � � � ;M). Because only the last elements in the projection
error~y(1)

t+1jẐx(t+1)
and~si

t+1jẐx(t+1)
(i = 1; � � � ;M) are the

necessary quantities to detects(t+ 1) and we have already
obtained~y(1)

tjẐx(t)
and~̂s

tjẐx(t)
at timet, we can take advan-

tage of the previous results without repeat the entire compu-
tation. This is a classical least squares problem which has
been well-investigated. We can use recursive least squares
algorithms, for example, the Recursive Modified Gram-Schmidt
(RMGS) algorithm [3] to implement the proposed decision
feedback symbol estimator both time and order recursively.
One implementation is summarized below, where~y

(1)

jẐx(t)
(t),

~̂sjẐx(t)
(t), ~ai

jẐx(t)
denote the last element in~y(1)

tjẐx(t)
, ~̂stjẐx(t)

(t)

~si
tjẐx(t)

(i = 1; � � � ;M), respectively. We have also defined

Ny(t)
�
=
Pt

n=w j~y
(1)

jẐx(n)
(n)j2,Nŝ(t)

�
=
Pt

n=w j
~̂sjẐx(n)

(n)j2,

andNy;ŝ(t)
�
=
Pt

n=w ~y
(1)

jẐx(n)
(n) � ~̂s

0

jẐx(n)(n).

The Decision Feedback Symbol Estimator by LSS
At time t:

1. Compute~y(1)
jẐx(t)

(t), ~ai
jẐx(t)

(i = 1; � � � ;M) based on the

results obtained att� 1.

2. Compute

Ny(t) = Ny(t� 1) + j~y
(1)

jẐx(t)
(t)j2 ;

Nsi(t) = Nŝ(t� 1) + j~ai
jẐx(t)

j2;

Ny;si(t) = Ny;ŝ(t� 1) + ~y
(1)

jẐx(t)
(t)~ai

jẐx(t)
0:

3. Compute

cos �i
�
=

Ny;si(t)p
Ny(t) � Nsi(t)

(i = 1; � � � ;M): (9)

4. k = argmaxi=1;���;M cos �i.

5. ŝ(t) = ak, Nŝ(t) = Nsk (t), Ny;ŝ(t) = Ny;sk(t).

To gain a better understanding of this adaptive decision
feedback symbol estimation algorithm, we make the follow-
ing remarks.

1. It can be shown [9][6] that forZx(t) = St�1;L [
Xt+L+1;�w, Theorem 1 still holds. Therefore, the
past detected symbols can be used to construct the
projection spaceZx(t). With part of the projection
space constructed from the input symbols directly, the
dimension of the projection space is reduced, which
leads to a lower computation cost.

2. In addition to the benefit of low complexity, the time-
and order-recursive property also enables the proposed
symbol estimator to track the channel variation. Fur-
thermore, the order-recursive property is very useful
in joint channel order and symbol detection [10].

3. This algorithm can be implemented with the same ba-
sic modules as in A-LSS [9]. The regular structure
makes the proposed algorithm suitable for VISI im-
plementation.

5. SIMULATION

Presented in this section are simulation studies of the pro-
posed decision feedback symbol estimator by adaptive least
squares smoothing (DF-LSS) as it was compared with the
subspace-based symbol estimator (SS-s)[4]. We also com-
pared the proposed algorithm with the MMSE FIR decision
feedback equalizer based on the channel estimated by the
subspace channel estimation algorithm [5] (SS-DFE). The
channel was estimated with 100 data samples. The forward
and backward filter of the decision feedback equalizer have
order2L andL, respectively withL denoting the channel
order.

The channel used in this simulation was a three-rayT=2-
spaced channel with gains[1; 1; 1] and delays[0:5T; T; 1:5T ].



The pulse-shaping filter was a square-root raised-cosine func-
tion with 25% roll-off and being truncated at�3T . Noise
samples were generated from i.i.d. zero mean Gaussian ran-
dom sequences and the signal-to-noise ratio (SNR) was de-

fined asSNR
�
= Efjjxtjj

2g
Efjjntjj2g

. The input was generated from
an i.i.d. binary phase shift keying (BPSK) sequence.

Figure 1 shows the bit error rate (BER) of DF-LSS as
it was compared with SS-s and SS-DFE. From Figure 1
we can see that SS-s performed rather poorly for this ill-
conditioned channel. Based on an inaccurately estimated
channel, the MMSE FIR decision feedback equalizer suf-
fered from a considerable performance degradation. The
proposed direct symbol estimator had a clear advantage in
performance for this ill-conditioned channel.
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Figure 1: Performance Comparison

6. CONCLUSION

A decision feedback blind symbol estimation algorithm is
proposed. Based on the least squares smoothing approach
and taking advantage of the finite alphabet structure of the
input signal, the proposed algorithm has several desirable
properties including adaptivity to both channel order and
channel parameter variation, fast convergence, good com-
putational efficiency, and modular structure suitable for VLSI
implementation. This algorithm can also be extended to the
case when the channel order is unknown [10]. In this case,
the channel order and the input signal are jointly detected to
fit the smoothing error of the input signal.
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