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ABSTRACT

We show that there are many qualitatively di�er-
ent equations, each with few parameters, that �t the
experimentally obtained Mel scale. We investigate the
often made remark that there are two regions to the
Mel scale, the �rst region (<� 1000 Hz.) being linear
and the upper region being logarithmic. We show that
there is no evidence, based on the experimental data
points, that there are two qualitatively di�erent regions
or that the lower region is linear and upper region log-
arithmic. In fact FM = f=(af +b) where FM and f are
the mel and physical frequency respectively, �ts better
then a line in the linear region or a logarithm in the
"log" region.

1. INTRODUCTION

The Mel scale is a fundamental result of psychoacous-
tics, relating real frequency to perceived frequency.
The foundation of the mel scale is the classic work
of Stevens and Volkman [5]. Their results and vari-
ations thereof appear in almost every speech book. In
this paper we address certain issues regarding the Mel
scale and in particlar we discuss the issue of �tting the
Mel scale and the implications and physical meaning of
the �tting formula. Many authors have attempted �t-
ting formulas for a variety of reasons. Most important
among these is that such �ts sometimes give an indi-
cation of the underlying physical phenomenon. Fur-
thermore, such �ts may be used to develop models for
the psychoacoustic scale. We believe that the �rst to
attempt such an analysis was Koenig [3] although the
formula by Fant [2] is the most commonly referenced.
Also, O'Shaughnessy [4] has given a formula which is
the same functional form as that of Fant but with dif-
ferent parameters.

It is very often said that the Mel scale is linear up
to a point (most authors use the �gure 1000 Hz.) and
logarithmic after that. This is an important statement
that may or may not be factual but often it is said to
imply certain aspects of the physical situation. The
focus of this paper is to �t curves of di�erent func-
tional form to the original data. We demonstrate that
based on the numerical evidence solely there is insuf-
�cient evidence to justify a conclusion that there are
two functionally di�erent regions.

It appears that the �rst attempt to devise a formula
that is acoustically relevant was by Koenig [3]. Koenig
divided the physical frequency region of 0 to 10,000 Hz.
in two di�erent regions and argued that the relevant
acoustic scale is linear below 1000 Hz and logarithmic
beyond that. As Fant makes it clear he was motivated
by Koenig and felt that his formula was better because
the "discontinuity at 1000 Hz." is removed.

Numerical Data

The results presented here are based on the original
Stevens and Volkman paper As we did not have access
to the numerical data we read the points from the graph
of Stevens and Volkman. This of course produces some
errors but we believe it is accurate enough for our con-
siderations. We also point out that the original data
probably had considerable variability since they were
averaged over many di�erent listeners. We give these
numbers in Table 1. In this table f represents the phys-
ical frequency and FM for the Mel frequency.

2. FITTING CURVES

We have attempted to �t a variety of functional forms.
Our choice was motivated by various ideas regarding



f = 40 161 200 404 693 867 1000 2022 3000 3393 4109 5526 6500 7743 12000
FM = 43 257 300 514 771 928 1000 1542 2000 2142 2314 2600 2771 2914 3228

Table 1: These are the physical frequency in Hertz and the corresponding Mel values, obtained from the �gure in
the Stevens and Volkman paper.

speech production [6, 7]. We have found the best
�ts for the functional forms indicated by the tables.
The error criterion was the usual sum of residuals.
We have also presented the �tting formulas of Fant
and O'Shaughnessy and have kept their numerical val-
ues. We note that their functional form is the same as
Case 4.

We considered three frequency ranges 1:

Table 2: The range considered in the Stevens and
Volkman paper; 40 Hz. to 12000 Hz.

Table 3: The so called "linear region", 40 Hz to
1000 Hz.

Table 4: The upper region, often called the "log"
region, 1000 Hz to 12000 Hz.

Generally we see that many equations �t the data
quite well. Of particular interest is the simple Case 1,

FM =
f

af + b
(1)

This simple equation also �ts the linear and log re-
gion quite well as can be seen from Tables 3 and 4.

3. IS THERE A LINEAR AND LOG

REGION?

As mentioned in the introduction it has often been
stated that the region from 0 to 1000 Hz. is linear
and the region above is logarithmic. It certainly is true
that it looks linear but it also looks like the beginning of
many non linear functions and therefore linearity may
not be an important physical condition. We believe
that one must be very careful in assigning meaning to
the phrase "it is linear up to 1000 Hz". We point out
that there are two possible meanings to the phrase:

1Also, we thought that it would be interesting to �t the data

only over the regions that is of most importance to speech and

hence we also �tted the data in the frequency range to 161 to

7743 Hz. The results turned out to be basically the same as in

Table 2 and are not presented.

a) it can convey that there are two qualitatively dif-
ferent regions based on di�erent physical e�ects or b)
that there may be a non-linear curve representing the
physical phenomena but that it just happens to be ap-
proximately linear in that regions. For example in ra-
dioactive decay the decay law N = N0e

��t is exponen-
tially decreasing and its explanation is well grounded
in theory and experiment. It does not have two qual-
itatively di�erent regions. For some decay times it is
approximately linear (N (t) = N0 � �t) - however it
would be misleading to imply that there are two quali-
tatively di�erent regions. We believe that many papers
on speech have assumed, or imply that indeed there are
two qualitatively di�erent regions.

To study this issue we used only the points up to
1000 Hz and re�t the curves as above. The results
are presented in Table 3. Indeed the linear �t is quite
good and one can certainly say that the data is approx-
imately linear. However note that other curves also �t
the data as well. Therefore there is no justi�cation in
saying that there are two qualitatively di�erent regions
or that there are two di�erent physical e�ects for dif-
ferent regions (that may be the case but the only point
we are trying to make is that the data does not sup-
port that view.) To study this issue further one or all
of the following must be done: a) perform new experi-
ments along the same lines; b) use the data from other
type of experiments and c) perhaps develop a realistic
model of the physical phenomena that would indicate
whether indeed there are two qualitative regions.

Consider now the region above 1000 Hz. The log
�ts as given by Cases 3, 4 or 10 give a pretty good
�t but they certainly are not better than the equation
given by cases 1 and 2. Hence, again one can not come
to any �rm conclusions that there is a log region based
on the data.

4. SCALING OF FREQUENCIES

There has been considerable work on attempting to �nd
and correlate the physical reasons that would produce
the Mel scale. One concept that has been developed by
the authors and others is scaling of the spectrum We
will not go into the details here but if we had simple
(uniform) scaling then the relation would be FM = lnf .
However the mel scale does not follow this curve. Re-
cently the authors have shown that one can experimen-



Case Equation Constants Error

1 FM = f=(af + b) a = 0.00024, b = 0.741 14776
2 FM = f=(af + blogf) a = 0.000218, b = 0.108 20958
3 FM = alog(b+ f=c) a = 2561, b = .961, c = 616.6 43174
4 FM = alog(1 + f=b) a = 2620, b = 657.6 46391
5 FM = a+ blnf + c(lnf)2 a = 1608, b = -1901, c = 574 78744
6 FM = a+ blogf + cf a = - 1845, b = 964, c = 0. 1204 499852
7 FM = a+ blnf a = -2978, b = 629 1276556
8 FM = a+ bf a = 652, b = 0.284 2603035
9 FM = a+ b=f + c=f2 a = 2306, b = -541487, c = 18097219 4736402
10 FM = alogf a = 541 7453270
11 FM = alog(l + f=b) Fant: a = 1000/log 2, b = 1000 307980
12 FM = alog(l + f=b) O'Shaughnessy: a = 2595, b = 700 112940

Table 2: Di�erent �tting formulas for the entire range of observations in Stevens'paper,(40 Hz to 12000 Hz). Cases
11 and 12 are the formulas of Fant and O'Shaughnessy. They are of the form give by Case 3. For the sake of
interest and comparison we have included the good �ts we obtained and some bad �ts.

Case Equation Constants Error

1 FM = f=(af + b) a = 0.0004, b = 0.603 1008
2 FM = f=(af + blogf) a = 0.000168, b = 0.1188 383
3 FM = alog(b + f=c) a = 3362, b = 1.03, c = 1043 351
4 FM = alog(1 + f=b) a = 2342, b = 596 777
5 FM = a+ blnf + c(lnf)2 a = 3294, b = -3080, c = 773 332
6 FM = a+ blogf + cf a = -458, b = 275, c = 0.646 556
7 FM = a+ blnf a = - 1859, b = 407.8 11416
8 FM = a+ bf a = 127.7, b = 0.9 2341
9 FM = a+ b=f + c=f2 a = 1346, b -424328, c = 4:08� 107 8818
10 FM = alogf a = 246 284654
11 FM = alog(l + f=b) Fant: a = 1000/log 2, b = 1000 4572
12 FM = alog(l + f=b) O'Shaughnessy: a = 2595, b = 700 1256

Table 3: Curve-�tting the Mel scale for frequencies below 1000 Hz. While the linear �t is good, it can be seen that
many of the non-�near equations also �t the data well in this region.

Case Equation Constants Error

1 FM = f=(af + b) a = 0.000244, b = 0.773 4327
2 FM = f=(af + blogf) a = 0.000222, b = 0.1056 13763
3 FM = alog(b + f=c) a = 2131, b = -0.07, c = 341 18239
4 FM = alog(1 + f=b) a = 2520, b = 593 38747
5 FM = a+ blnf + c(lnf)2 a = -6699, b = 2848, c = -98 17243
6 FM = a+ blogf + cf a = -5947, b = 2303, c = -0.015 15138
7 FM = a+ blnf a = -5474, b = 934 18291
8 FM = a+ bf a = 1322, b = 0.19 628424
9 FM = a+ b=f + c=f2 a = 3634, b = �6:04� 106, c = 3:416� 109 14906
10 FM = alogf a = 642 1952263
11 FM = alog(l + f=b) Fant: a = 1000/log 2, b = 1000 303230
12 FM = alog(l + f=b) O'Shaughnessy: a = 2595, b = 700 111300

Table 4: Di�erent �tting formulas for the "LOG' range (1000 Hz to 12000 Hz).



tally obtain the Mel scale (to a high approximation)
from a speech production point of view and we have
also considered the implication of this scale from the
point of view of scaling the spectrum. Further dis-
cussion of scaling and the Mel scale will be presented
elsewhere.

5. CONCLUSION

The fact that so many curves (with few parameters)
�ts the data so well leads one to the conclusion that
caution must be used in assigning signi�cance to the
interpretation of a particular functional representation.
Since the existing data may be well �t by curves of
many functional forms, there is insu�cient evidence
to justify the selection of one of these forms as correct.
The conclusion may be made that the warping function
is not linear, and it is not logarithmic, and the function
may be approximated numerically, but these are the
extent of the conclusions which may be drawn from
the existing data.

As to the issue of di�erent regions its clear that
there is no evidence that there are two qualitatively
di�erent regions. In particular there is no evidence
that the lower region is linear and upper region log-
arithm. In fact it can be argued that case 1 �ts every
region quite well. It is nether linear nor logarithmic.
We would like to make clear that we are not saying that
indeed these two regions are not linear or logarithmic.
It may be the case that they are, based on further evi-
dence, and the lack of a good �t may be due to errors
in the data. However, we are emphasizing that based
solely on the Mel scale data such conclusions are un-
warranted.

Finally, we would like to point out that there are
other experiments that relate response of the ear to
actual physical frequencies. A review of such experi-
ments has been given by Allen [1]. We are currently
investigating that data in the light of the results of this
paper.
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