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ABSTRACT

When nonlinearity is involved, time series prediction
becomes a rather di�cult task where the conventional linear
methods have limited successes for various reasons.

One of the greatest challenges stems from the fact that
typical observation data is a scalar time series so that di-
mension of the nonlinear dynamical system (embedding di-
mension) is unknown.

This paper proposes a Hierarchical Bayesian approach
to nonlinear time series prediction problems. This class of
schemes considers a family of prior distributions parame-
terized by hyperparameters instead of a single prior so that
it enables algorithms less dependent on a particular prior.
One can estimate posterior of weight parameters, hyperpa-
rameters and embedding dimension by marginalization with
respect to the weight parameters and hyperparameters.

The proposed scheme is tested against two examples;
(i) chaotic time series, and
(ii) building air-conditioning load prediction.

1. FORMULATION

Problem A:
Given data setD := fxtg

N
t=0 � IR , predict fxtg

T
t=N+1

.Hypothesis H

Hypothesis or model consists of the following:

(i) Architecture:
e.g., three-layer perceptron with h hidden units and
a particular sigmoid function.

(ii) Likelihood:

P
�
fxtg

N
t=� ; fx��1; : : : ; x0g j w; �;H

�
:=

N��+1Y
t=0

1

ZD(�)
exp (��ED(xt+� j xt+��1; : : : ; xt;w))| {z }

noisy dynamics

� P (x��1; : : : ; x0 j H)| {z }
initial state uncertainty

(1.1)

ED(xt+� j xt+��1; : : : ; xt;w)

:=
1

2
(xt+� � f(xt+��1; : : : ; xt;w))

2 (1.2)

where f(�) is neural net output, w 2 IRk the weight
parameters of a particular architecture, � (unknown)
uncertainty level, ZD(�) the normalization constant,
and � is embedding dimension (the order of the dy-
namics) which is unknown. Equation(1.1) looks at
fxtg as a �-th order Markov process whose state tran-
sition probability density is given by the �rst factor
whereas the second factor is the initial state proba-
bility density.

(iii) Prior for w:

P (w j �;H) :=

CY
c=1

1

ZW (�c)
exp(��cEWc (wc))

(1.3)

Ewc (wc) :=
1

2
jj wc jj

2 (1.4)

where w is decomposed into groups:

w := (w1; : : : ; wC) ; wc 2 IRkc ; (1.5)

� := (�1; : : : ; �C) ; �c 2 IR (1.6)

exp(��cEWc (wc))=ZW (�c) represents the prior be-
lief on how wc should be distributed with (unknown)
�c and ZW (�c) is the normalization constant.

(iv) Prior for (�; �), hyperparameters: P (�; � j H)

(v) Prior for H: P (H)

The goal of the prediction problem is to compute the
predictive distribution(density) P (fxtg

T
t=N+1 j D) under

(i) { (v). This paper �rst computes three levels of posterior
distributions as shown in Fig. 1.1 and use them to compute
the predictive distribution.

The most di�cult parameter to be estimated is � , the
embedding dimension. In order to explain this, let us �rst
consider the linear dynamical system

yt+1 = Fyt; yt 2 IRK ; xt = GT yt; xt 2 IR (1.7)

i.e., GT represents a linear observation, T being matrix
transpose. One can show that generically, that there is a
nonsingular matrix � such that

(xt; xt�1; : : : ; xt�K+1) = �yt



so that the K-dimensional delay coordinate system xt =
(xt; xt�1; : : : ; xt�K+1) preserves various properties of (1.7).
Well known AR model is described by

xt+1 =

K�1X
i=0

wixt�i + � (1.8)

where � is a noise process. Note that (1.1) contains (1.8)
as a special case where

f(w; xt; : : : ; xt�K+1) =

K�1X
i=0

wixt�i; � � i:i:d: N(0; 1=�)

Since AR model demands fwig be (asymptotically) sta-
ble, the origin is the only meaningful invariant set. In
contrast, nonlinear dynamical system

yt+1 = F (yt); yt 2 IRK (1.9)

can naturally admit non-trivial stable periodic orbits, in-
variant closed curves and even chaotic attractors which typ-
ically have Cantor structure. Let Y � IRK be an invariant
set and let xt = G(yt); xt 2 IR be observation. Determin-
ing the number of delay coordinates (xt; xt�1; : : : ; xt��+1)
is non-trivial. The following is due to Sauer and others [1].

Fact 1.1 Let the invariant set Y be a compact subset of
an open set U � IRK , with box counting dimension d 1

. If

� > 2d (1.10)

then for almost every smooth observation G, the delay co-
ordinate map yt 7�! (xt; xt�1; : : : ; xt��+1) is

(i) One-to-one on Y ;

(ii) An immersion on each compact subset of a smooth
manifold contained in Y , provided that several regu-
larity conditions are met on periodic points.

Since yt 7�! (xt; xt�1; : : : ; xt��+1) is one-to-one (for al-
most every G), delay coordinate system su�ces for predic-
tion purposes. Positive Lyapunov exponents can be com-
puted since unstable manifold is preserved. Note, however,
that the result is for noiseless dynamics. Note also that
(1.10) is a su�cient condition so that � � 2d may \work".

Decomposition (1.5) of weight parameters and associ-
ated decomposition (1.6) of hyperparameters are important.
Typically a subvector wc consists of those weights between
each input variable to feedforward neural net and hidden
units so that dim wc = h, the number of hidden units. An-
other typical wc0 consists of the biases for hidden units, and
�nally the bias for output unit together with the weights
between hidden units and the output. Thus a typical di-
mension of � is � + 2, where � is the hypothesized order of
the Markov process.

1Let N(") be the number of K-cubes needed to cover Y . Box
counting dimension of Y is given by

d := lim
"!0

logN(")

log 1
"

provided it exists which can be non-integer.

2. PREDICTIONS

Fact 2.1 (Level 1: Posterior for w)

The posterior of w given (D;�; �;H) is

P (w j D;�; �;H) =

exp(�M(w;�;�))
ZD(�)ZW (�)

P (D j �; �;H)
(2.1)

M(w;�; �) := �ED(w) +

CX
c=1

�cEWc(wc) (2.2)

and hence the most probable w, called wMP, is given by

wMP = argmin
w

M (w;�; �) (2.3)

Fact 2.2 (Level 2: Posterior for (�; �))

If P (�; � j H) is independent and at, then the most
probable hyperparameters are given by

(�MP; �MP) = argmax
�;�

P (D j �; �;H) (2.4)

so that the following gradient information can be used for
�nding (�MP; �MP):

@

@�
log P (D j �; �;H)

� �ED(wMP)�
1

2
TrA�1BD �

@

@�
logZD(�)(2.5)

where A is the Hessian of M evaluated at wMP, Tr stands
for a trace of a matrix, ED is de�ned by (1.2) and BD is
the Hessian of ED at wMP.

@

@�c
logP (D j �; �;H)

� �EWc(wcMP) �
@

@�c
logZW (�) �

1

2
TrA�1BC

(2.6)

where BC is the Hessian of EWc at wMP.

Fact 2.3 (Level 3: Posterior for H (model comparison))
If P (H) is at, then the most probable model is given

by

HMP = argmax
H

P (D j H) (2.7)

Fact 2.4 (Predictive Distribution)

P (fxtg
T
N+1 j D) =

X
H

Z Z Z
P (fxtg

T
N+1 j w; �;H)

�P (w;�; �;H j D)dwd�d� (2.8)

If P (fxtg
T
N+1 j w; �MP;H) �

Y
t

1

ZD(�MP)

� exp
n
�
�MP
2

(xt+1 � f(xt; : : : ; xt��+1;wMP)

�
@f

@w

T

(w �wMP))
2

�
(2.9)



P (w j D;�; �;H) �
1

(2�)h=2 detA�1=2

� exp
�
�
1

2
(w �wMP)

TA(w �wMP)
�

(2.10)

then the predictive mean xt;MP is given by

xt+1;MP = f(xt;MP; : : : ; xt��+1;MP; wMP) ;

N � t � T � 1 : (2.11)

Log marginal likelihood �2 log P (D j �; �;H) is some-
times called ABIC [2] or evidence for hyperparameters [3],
and marginal likelihood at the next hierarchy P (D j H) is
sometimes called evidence for model [3]. The quantity pro-
posed in [2], �2 logP (D j �; �;H) + 2dim(�; �) is di�erent
from �2 logP (D j H), however.

3. DEMONSTRATIONS

3.1. Chaotic Time Series

Consider the R�ossler System(
_x = �y � z
_y = x+ ay
_z = bx � cz + xz

(3.1)

with (a; b; c) = (0:36; 0:4; 4:5) (Fig. 3.1).
Consider(

_x = �y � z + �1t
_y = x+ ay + �2t
_z = bx� cz + xz + �3t

(3.2)

where �1t , �
2
t , �

3
t are noise processes. To avoid technical dif-

�culties associated with stochastic process with continuous
parameters, let us consider the discrete version of (3.2):(

x(t+1)� = f(xt�; yt� ; zt�) + �1t�
y(t+1)� = g(xt�; yt� ; zt�) + �2t�
z(t+1)� = h(xt� ; yt�; zt�) + �3t�

(3.3)

where f (�), g(�), h(�) represent a numerical integration scheme
, e.g., Runge-Kutta, with step size �, and �it� � i :i :d :
N(0; �2); i = 1; 2; 3.

Let fxt�gt�0 be the observation. There are two parame-
ters to be estimated. One is the sampling period �, i.e., how
often xt� should be sampled. Another is the embedding di-
mension � (see (1.1)). There are several di�erent algorithms
for each of them. One of our main purposes in this pa-
per is to estimate � so that we assume that � is already
estimated. Figure.3.2 shows (xt��; x(t�1)��; x(t�2)��) with
� = 0:01, � = 50, and � = 0:02, t = 0; :::; 499. This data
was used as the training data set and the scheme described
in the previous section was applied.

Figure.3.3 shows log P (D j �MP; �MP;H) against (�; h).
The model with the highest marginal likelihood was selected
(� = 4; h = 5), and used for prediction.

Fig. 3.4 shows (xt��;MP; x(t�1)��;MP; x(t�2)��;MP)-trajectory,
and �gure 3.5 shows prediction capability of the learned sys-
tem where the initial condition was not in the training data.
These �gures indicate that the present approach may give
rise to a new means for inferring embedding dimension of a
chaotic attractor when system noise is present.

3.2. Air-conditioning Load Prediction

Saving energy and reduction of CO2 emissions are be-
coming critical for conservation of global and regional en-
vironments. The cost of electricity during night hours is
typically much less than that of the daytime. Therefore, in
electrically operated HVAC (Heating, Ventilation, and Air-
Conditioning) systems, introduction of thermal energy stor-
age systems can help level o� electricity demand through-
out the day and thus increase the overall operation e�-
ciency of the power plants run by utility companies. Very
good prediction algorithms are needed for predicting air-
conditioning loads in order to decide the amount ice to be
produced.

\The First International Benchmark Test of Air-con-
ditioning Load Prediction Methods for Optimum Opera-
tion of Thermal Energy Storage Systems" was organized
by SHASE (Society of Heating, Air-conditioning, and San-
itary Engineers in Japan) [6] which we participated.

Problem B:
Let data set D :=

�
fxtg

N
t=0 ; futg

N
t=0

�
� IR� IRm

be given, where ut are the inputs and xt is the out-
put. Given additional input data futg

T
t=N+1, predict

fxtg
T
t=N+1 .

The air-conditioning load prediction problem belongs to
Problem B where ut represent meteological data including
temperature, humidity, windspeed, solar ux, and so on,
and xt is the total load at time t.

The details are omitted due to limitation in space. Our
result was the �rst among the seventeen participating groups
[6].
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Level 1

P (w j D;�; �;H) =
P (D j w; �;H) P (w j �;H)

P (D j �; �;H)

Level 2

P (�; � j D;H) =
P (D j �; �;H) P (�; � j H)

P (D j H)

Level 3

P (H j D) =
P (D j H) P (H)

P (D)

=)

Predictive Distribution

P (fxtg
T
N+1 j D)

=
X
H

ZZZ
P (fxtg

T
N+1 j w;�;H)

� P (w;�; �;H j D)dwd�d�

Figure 1.1
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Figure 3.1: R�ossler system
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Figure 3.2 Training data:
(xt��; x(t�1)�� ; x(t�2)��)

2
3

4
5

6
7

4
5

6
7

8

-100

-50

0

τ
h

P(D|αMP,βMP,H)

Figure 3.3: logP (D j �MP; �MP;H) against
(�; h)
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