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ABSTRACT
BCH codes in the frequency domain provide robust channel
coding for image channel coding applications. The underlying
problem of estimation of real/complex sinusoids in white additive
noise may be formulated and solved in different ways. The
standard approach is based on the least squares method and
Berlekamp-Massey algorithm (BMA). In this paper we compare
the performance of the BMA with other LS based algorithms
including: minimum norm solution based algorithm (MNS),
forward-backward linear prediction based algorithm (FBLP) and
singular-value decomposition based minimum norm algorithm
(SVD-MNA). Results of computer experiments show that the
introduction of minimum norm solution, forward-backward
prediction and the SVD decomposition may significantly improve
the performance of the decoder in the case of the relatively low
SNR. In selecting between the proposed algorithms a
performance/complexity trade-off has to be considered.
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1. INTRODUCTION

The majority of image compression coding standards (JPEG,
MPEG, H.261, H.263) are designed for communication channels in
which average bit error rates (BERs) are better than 10-6. But for
example, wireless channels are characterized by long bursts of bit
errors, and average BERs of 10-3 are common in cellular telephony.
Therefore, a powerful and robust channel coding needs to be
applied to achieve acceptable image quality. As regards the required
transmission or storage quality, relatively low noise is tolerable, but
relatively high noise amplitude (impulse noise) must be corrected.
Error detecting and correcting techniques are typically based on
BCH and RS codes in combination with the interleaving techniques.
These codes allow for correction of a certain number of erroneous
samples (bytes). BCH codes in the frequency domain can be defined
over the finite field, or over the real/complex field. Finite field codes
over GF(q) are based on Galois Fourier Transform (GFT) [1],
real/complex number codes are based on Discrete Cosine Transform
(DCT) [2] and on Discrete Fourier Transform (DFT) [3].

Codes defined over the real/complex field such as in [4] have
several advantages since these codes can correct errors and reduce
data rate simultaneously, there is no restriction against certain block
lengths, decoding algorithms are tolerant to small errors on every
sample (pixel), and finally error control coding problem is turned to
a signal processing problem. A syndrome in BCH codes defined in
the frequency domain is a sum of complex sinusoids, which
corresponds to a nearly nonstationary autoregressive models.

However, the underlying problem of estimation of real/complex
sinusoids in white additive noise may be formulated and solved in
different ways. The standard approach to decoding of BCH codes is
based on using the Berlekamp-Massey algorithm (BMA) [5]. In this
paper we compare the performance of the BMA with other LS based
methods: minimum norm solution based algorithm (MNS), forward-
backward linear prediction based algorithm (FBLP) and singular value
decomposition based minimum norm algorithm (SVD-MNA) [6].
Results of computer experiments show how the introduction of
minimum norm solution, forward-backward prediction and SVD
decomposition contribute to the performance improvement.

In section 2 a short review of BCH codes in the frequency domain
followed by the introduction of the nonstationary autoregressive
models is given. LS method based decoding algorithms including
BMA, MNS, FBLP and SVD-MNA are introduced in the section
3. Computer simulation results showing the performance of these
algorithms as well as their analysis are presented in the section 4.

2. THE PROPOSED CHANNEL CODING
METHOD

If vector x contains c zeros at predefined successive locations in the
sequence and the rest of N-c=M values contain data information, the
vector X=DFT(x) represents a code vector of an (N,M) BCH code.
Such real or complex-number (N,K) BCH codes are, like Reed-
Solomon codes(RS), the minimum distance separable (MDS) codes
and exist for every N≥ 2, 0<M<N [1]. Due to disturbances during
transmission or storage of a sequence of coefficients, the received
vector is Y=X+E, where E is an error vector. An inverse transform of
the received vector Y is a vector consisting of the first M information
data disturbed by noise and the last N-M=c values representing the
syndrome. Thus y=IDFT(Y)=[yM,s], where yM=x+e, and e=IDFT(E).
In image coding applications, vector x can represent an inverse
discrete Fourier transform (IDFT) of non-zero DCT coefficients
computed for example in a common JPEG coder [7].

Since errors appear as impulses in the frequency domain, the
corresponding error sequence in the time domain is always a
periodic sequence. Therefore AR(p) models describing such
periodic sequences have parameters located at the boundary of the
so called nearly nonstationary AR models [8]. An autoregressive
model of order p in a polynomial form is

a(L) xn = 0, (1)

with D / * /L
L

S

� � � �= −
=

∏ �
�

where Gi
-1 are the roots of the

characteristic equation a(L)=0. In order to obtain a nearly
nonstationarity we require that |Gi|=1. Equation (1) represents the



well known key equation [1]. For a complex AR(1), a single
complex root is G1=ej2πf

1 and a1=G1.

For example, let us consider spectra with N=20 components so
that with c=p=2 we have (20,18) BCH code. The number of
different AR(1) models is N/2-1=9. Figure 1 illustrates model
locations on the triangle which defines the stationarity region for
an equivalent real AR(2) model [7].

3. DECODING OF REAL/COMPLEX BCH
CODES: AR PARAMETER ESTIMATION IN
ADDITIVE NOISE

Consider a received signal {x(f)} that consists of L complex
sinusoids whose complex amplitudes are α α α
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uncorrelated with the signal and the complex sinusoidal components
of the received signal are uncorrelated with each other

In this paper we take that the data vector length N is minimal one, i.e.
data vector consists of only N=2L complex elements. We choose a
minimal number of samples such that it is enough to make it possible
to obtain correct spectrum estimate in noiseless case. In addition
frequency and phase of sinusoids are discrete i.e. with L=1:
fi={f 1,f2,.....,K f1}; ϕi={0,±π/2,π}, where K is codeword length.
However, amplitudes of sinusoids are continuous variables.

3.1 Common Least Squares Solution

The key equation (1) can be directly solved by matrix inversion
or, more efficiently, by using the Berlekamp-Massey algorithm
(BMA) [5]. In matrix form we have

A a = b (3)

where A is LxL data matrix, a and b are L component vectors.

Sensitiveness of the parameter estimation can be analyzed by
exploring covariances of estimates of the AR parameters. The
error covariance matrix V(a) for the estimation of the AR
parameters for the case of noisy observation is given by [9]

V(a) = E[(a - a) (a - a)T] = Γ p
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Berlekamp-Massey algorithm represents a standard method to
decoding of BCH codes

3.2 Minimum Norm Solution for Undetermined Case
Assuming that signal plus noise is an ARMA(p,p) stochastic
process, the matrix equation (3) represents a linear system of p

simultaneous equations which can be considered as undetermined
system since ARMA(p,p) model is equivalent to an AR(∞) model.
Here we can use the minimum norm approach directly by solving an
undetermined system to exploit its super resolution feature. The
problem can be solved by finding the vector a of dimension K>p
that satisfies (3), subject to the condition that its Euclidean norm is
minimised. Writing equation (3) directly in terms of data matrix as
� � �D $ $$ E
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�  represents a

Moore-Penrose pseudoinverse of matrix A. We write

â = A+ d (5)

The two forms given in (3) and (5) are mathematically equivalent
but they lead to different estimates of the least-squares estimate â.
for underdetermined case The later is preferable since it offer a
super-resolution approach to estimate sinusoids in noise [10].

3.3 Forward Backward Linear Prediction (FBLP)

Given the time series of length N and the transversal filtering structure
of length M+1 we may define an augmented data matrix A as [10].
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The left half of the data matrix AH represents sets of tap inputs used for
forward filtering, while the right half of the data matrix AH represents
sets of tap inputs used for backward filtering. Computing of a
coefficient vector a is based on FBLP LS method of equation (3)
where data matrix A is defined by (6). The solution may be obtained
by using the Moore-Penrose pseudoinverse as in (5). Using FBLP
model makes it possible to use the available data samples more
efficiently in order to improve the quality of the estimate.

4.4 Least Squares Estimate Based on Singular
Value Decomposition

In real systems we have to base our analysis on the estimate of the
ensemble-averaged correlation matrix R=AHA, where A is
defined by (6) and the scaling factor is neglected.

The eigenvectors of the correlation matrix estimate �5  are divided
into two sets: the set v1, ...,vL that spans the signal subspace and
defines the matrix VS and the set vL+1, ...,vM+1 that spans the noise
subspace and defines the matrix VN. These two matrices may be
partitioned as
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 , where the (1xL) row vector J

V
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1x(Mx1-L) row vector J
Q

7  have the first elements of VS and VN

respectively, and the MxL matrix GS and the Mx(M+1-L) matrix
GN have the remaining elements [6].

A single vector a that spans the noise subspace (i.e. a linear
combination of the noise-subspace eigenvectors vL+1, ...,vM) is
computed with the constraint that its first element a(0)=1 and its
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Vector a may be viewed as the tap-weight vector of a transversal
filter operating as a prediction-error filter of order M, and it can

be partitioned in the form [ ]D = � � Z
_
_

Vector a (or w) may be computed from the relation which is
based on the fact that it is orthogonal to the eigenvectors spanning
the signal subspace9 D
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With / 0≤ this system of equations is undeterminated, and has no
unique solutions. Using the minimum norm constraint enables us to
obtain the unique solution to this LS problem as follows [6]:
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The eigenvectors of the matrix �5 can be obtained applying singular
value decomposition (SVD) directly to data matrix A.

4. COMPUTER SIMULATIONS
For example, let us to consider an example of (20,18) BCH code
defined in the frequency domain as in Section 2. Let a single
complex impulse noise of amplitude 10 be added to spectral
components separately so that syndrome signals are complex
sinusoids of the unit amplitude. Additive noise is a zero-mean white
process of variance 0.01 i.e. SNR=17dB.

Fig. 1a illustrates the parameters scattering graph obtained by
simulation based on approach defined in 3.1 (equation (3) or BMA
algorithm). The agreement with equation 4 is excellent. Note that
parameter variances are not the same and are strongly dependent on
the component frequency. For SNR=17dB scattering patterns are not
quite separated so we can expect a low decoder output quality.
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Figure 1 AR(2) parameters distribution (white noise variance of
0.0025 for  a) BMA  b) MNS  c) FBLP  d) SVD-MNA.

Consider next the application of the minimum-norm algorithm
defined in 3.2. to the same example (Fig 1b). Note that, compared
with Figure 1a, the scattering patterns are located at greater
Euclidean distances with lesser sensitiveness to noise. It could be
concluded that minimum-norm algorithm based on pseudoinverse of
data matrix for underdetermined case assures about twice resolution
than method based on BMA. This corresponds to more than 3 dB
better SNR for the minimum-norm approach. Note that Fig 1b gives
only two dimensional presentation. Since we have computed 3
parameters, 3-D analysis should give better resolution.

Figure 1c illustrates the parameter scattering for the model
described in 4.3. which is based on FBLP LS algorithm. Here the
scattering parameters are located in the  similar directions as in
Fig. 1a. and with similar variation of a1 and a2 parameters, but not
in an ellipsoidal form. Parameters scattering are almost of a line
form, so that parameter resolution is better. It can be calculated
that FBLP LS approach gives further improvement compared
even to minimum norm solution approach. Finally, Fig.1d depicts
the parameter scattering for the model based on FBLP and
singular value decomposition. Scattering patterns are generally
the same as in Fig.1c but without any fluctuation from line form.
It confirms that eigenvectors in the signal space are less sensitive
to noise than other estimates.

Figure 2 shows an example of a test gray-scale image with 640x480
pixels and an 8bit/pixel. Suppose that the picture should be
compressed to a very good  JPEG quality, this image has more than
75 per cent zero-valued spectral coefficients so that, on average,



there are only 16 nonzero spectral coefficients per each 8x8 block.
Adding extra 4 zero samples to the corresponding time sequence we
have, in the average, 20-sample time series with a redundancy of
0.2. DFT transform of this sequence is the codeword of a (20,16)
real-valued BCH code capable to correct up to r=2 impulse errors.
To illustrate its capability, each sequence of N spectral components
(N/2 real and N/2 imaginary) is corrupted with a single impulse
noise of fixed-valued amplitude 75 (with random sign) in the way
that the impulse noise is added to the randomly chosen component.
In addition, all components are corrupted with a Gaussian zero-
mean white noise with σ

Q

� =2.5.

Figure 2b shows the corrupted images by single impulse and
white noise both. Figure 2c shows a decoded picture based on
BMA and Fig. 2d shows the decoded picture based on minimum-
norm algorithm (MNA-SVD). As it can been seen, residual
disturbance in the decoded picture by MNA-SVD is practically
caused only by the white noise. It should be noted that an
amplitude estimate has been based on a least squares for
overdetermined case.

a)

c)

Figure 2 A two-dimensional example of a real-valued DFT code
a)  original image
b)  image corrupted by white noise and impulse noise
c)  decoded image by BMA
d)  decoded image by MNA-SVD

5. CONCLUSION

In this paper we have considered the problem of decoding BCH
codes in the frequency domain for image channel coding
applications by using different LS method based algorithms. The
performance of the standard BMA algorithm is compared to the
performance of other LS based algorithms: minimum norm solution
based algorithm (MNS), forward-backward linear prediction based
algorithm (FBLP) and singular-value decomposition based
minimum norm algorithm (SVD-MNA). Results of computer
experiments show that the introduction of minimum norm solution,
forward-backward prediction and the SVD decomposition may
significantly improve the performance of the decoder in the case of
low SNR. In selecting between the proposed algorithms there is a
performance/complexity trade-off to be considered. Our further
work will focus on statistical analysis of the proposed algorithms as
well as on their improvement.
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