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ABSTRACT

A method is proposed to measure the performance of linear
predictors as they track non-stationary stochastic processes.
Classical linear regression techniques are combined with a novel
use of instantaneous error to define the likelihood that the
coefficients of a linear predictor adequately capture a system's
state. The resultant probability measure serves as a metric of
predictor performance: a probability near unity indicates that the
predictor is performing well, while a probability near zero
indicates the state of the system is poorly captured by the
coefficients.  The approach is extended to trace coefficients,
weighted by these probabilities, as they move about in a space of
possible states. The probability measure provides an
instantaneous confidence measure of the route that the system
proceeds upon within that space: a likelihood roadmap of the
state of the system through time.  Specifically, the method is
applied to the important problem of predicting the vibration
signature of rotorcraft gearboxes as they mechanically fail. Actual
data from US Navy drivetrain teststands are used to validate the
method and underlying assumptions.

1. INTRODUCTION

Adaptive predictors attempt to learn the underlying process
parameters as the system that they are tracking evolves.  Although
these predictors can be used to track stationary stochastic
processes — in which they first "learn" the process by modifying
their coefficients to minimize some error criteria and then
maintain those coefficients — they are more valuable for non-
stationary processes whose parameters, by nature, change with
time.  Unsupervised adaptation, whereby a feedback path is
provided from the predictor error to the coefficient modifier, is an
especially valuable learning method for non-stationary processes
since it allows for autonomous tracking of the changing
phenomenon.

Although the principal use of predictors is to suggest the most
likely outcome of the stochastic process at some sample point in
the future, the predictor coefficients themselves can provide
valuable information about the state of the process being
modeled.  That is, as an estimator of the process in the future, the
predictor contains information about the state of the process.  For
processes that naturally progress from one state to another,
although at an unknown rate, the current state information can be
quite valuable.  The application of interest to the authors —
health prognosis of rotorcraft drivetrain assemblies — is an
important example of such a process.  The cyclic nature of the
machinery means phenomena in the assemblies is best observed

by monitoring time-series vibration signatures [1].  As these
systems fail, they evolve from a "healthy" state to one of several
possible "failed" states.  Interim states between these two end
states can provide information about the likely type of failure that
is causing degradation.  When this information is coupled with
prediction error, process history, and past trends, prognoses can
be conjectured about the remaining usable lifetime of the gearbox
or other assembly under observation.

An important determinant of predictor performance is
obviously the accuracy of the coefficients, since it is the
coefficients that weight previous inputs to form a sum that
represents some future value.  When considering predictor
coefficients to be representative of the system state, their accuracy
is even more consequential to performance.  This paper presents a
novel method for determining the accuracy of predictor
coefficients in the context of representing system state.  A
probabilistic approach is used to determine a likelihood measure
for the coefficients of linear predictors that track non-stationary
processes.  A classical linear regression error measure is used to
define confidence intervals on the coefficients.  This is coupled
with a short-term error measure that addresses the time-varying
transitions from one state to another.  Specifically, for the
application described above, the short term error tracks
coefficient accuracy as the machinery moves from "healthy" to
"faulty".  Confidence intervals based upon regression error are
created once the process becomes temporarily stationary.  A
probability density function is then created over coefficient space
— representing process state space — to provide a map that
suggests where and the how the machinery is progressing from
healthy to faulty.  This map will allow rotorcraft operators to
make strategic decisions about flight risks related to the
drivetrain.

2. LINEAR PREDICTORS & ERROR

Consider a conventional discrete-time m-stage linear predictor
[2] in which some future output y(n+1) is formed by the vector
product of a set of previous inputs x and predictor coefficients w.
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where the bias weight is included in w as w0,  The predictor will

have an instantaneous, error e(n) = y(n+1) – x(n+1) which can be
used to modify the predictor weights using Least Mean Squares
(LMS) minimization or its variants [3] [4].

2.1 Long-Term Regression Error

If the predictor weights are modified using LMS, then these
weights can be treated as regressors, that is, regression
coefficients in classical linear estimation [5].  Moreover,
confidence intervals can be defined for each of the m+1
individual predictor coefficients in w.  The width of each
confidence interval, or wholly, the volume of hyperplane defined
by m+1 confidence intervals, is a measure of how well the
predictor has captured the process being modeled.

Specifically, the 100(1-a) percent confidence interval on
coefficient wj is
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2,M-m} is the t-distribution of order 
a

2 and degree M-m;

M is the number of training epochs, and (s
2Cjj ) is the jth

diagonal element of the covariance of w.

2.2 Short-Term Instantaneous Error

Confidence intervals can provide a good estimate of the
accuracy of the predictor coefficients for a stable, i.e., stationary,
system.  However, non-stationarities in the process will cause the
confidence intervals to grow very large and render them
meaningless.  When this occurs, a different error measure must be
used.

To complement the "long-term" regression-based error
analyses, a "short-term" instantaneous error, namely the mean-
square error (MSE) is used.  It is computed from the
instantaneous error with an exponential decay.  Growth in MSE is
indicative of poor predictor performance.  Thus, MSE is used as a
primary gauge on coefficient accuracy.  Once MSE has settled to
a nominal value and coefficients become stable, the long-term
regression-based analyses can be used to form confidence
intervals. Conversely, if (when) MSE again rises, MSE is used as
a measure on the accuracy of the predictor coefficients and the
confidence intervals are ignored (and reset) until the process
stabilizes

3. DEFINING A LIKELIHOOD MAP OVER
PARAMETER  SPACE

Thus, we propose a system in which two error metrics are used
to track predictor performance.  MSE is the primary indicator and
regressor confidence intervals are used once MSE has settled.
Both are inversely proportional to the probability that the
predictor coefficients have captured the state of the process being
observed: as MSE decreases and as confidence intervals become
tighter, the likelihood is greater that the predictor has adequately
captured the system state evolution.  More rigorous mathematical

work is in progress that quantifies the link between the two
"error" terms and a true probability density function.  For this
presentation, we generalize the concept and provide real-world
example data and results.

As described above, if MSE is high (or changing) the
confidence intervals provide little information about the
underlying process.  Thus, during those times, the MSE should be
used exclusively as a some measure of likelihood that the
predictor's coefficients have captured the underlying process
state.

Consider the MSE of the predictor and only one predictor
coefficient, wj.  In general, if MSE is low, then that coefficient is

likely to be correctly capturing the system state.  In the context of
that single parameter, the system can be assumed to be near that
parameter value.  If the MSE is high — again, in general — then
the actual system state may or may not be near that coefficient
value.

One can view error in terms of a likelihood measure: as error
increases, the system is likely to be moving from one state to
another. If error is consistently high, a number of different states
are likely. If error is low, the state is specified with a higher
likelihood. Thus, we can consider MSE to define a cone over
state space within which probabilities can be determined.  If MSE
is high, the true value of wj may take on a range of values and

one can assert a relatively low probability that the current value
of wj is an accurate choice.  Conversely, for example, if MSE is

precisely zero, then one may consider claiming that wj is correct

with high probability.  This is illustrated in Figure 1, below, in
one dimension (for one coefficient).  For two coefficients, MSE
over parameter space should be considered as a planar ellipse and
in higher dimensions, it will be a hyper sphere (hyper ellipse).

FIGURE 1. Probability Measure Over Single Parameter

Now consider a system that is moving between two stationary
states, or from one well-defined state to another unknown state.
This process is shown below (Figure 2) in the context of gearbox
failures.  If one adds another dimension of "likelihood" to this
trajectory map, that is, the likelihood measure based upon MSE,
then one might be able to depict probabilistically the trajectory
from a healthy gearbox to a faulty gearbox.  Of course, previous
states will be well known (if they were captured by the predictor)
and likelihoods of future states will be poorly defined.  At any
given time, however, the likelihood map could be depicted that
characterizes the system evolution.
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FIGURE 2. Map of Trajectory Through Parameter Space.

Confidence intervals are used once MSE is reduced to an
acceptable level — that is, once the likelihood of being in
particular state, as defined by the coefficient vector, is
unacceptably large.  Confidence intervals, based upon regression
analyses, can then be used to give a more detailed measure of
how well the coefficient vector captures the state of the
underlying process.

4. A REAL-WORLD PROBLEM

This method has been applied to an important problems in the
domain of aircraft health and usage monitoring: rotorcraft
transmission health prognosis.  With diminishing maintenance
budgets and fleet sizes, the US Department of Defense is facing
serious strategic and logistical issues involving mission-readiness
for their helicopter deployments [6]. The realities of this problem
are clear from the perspective of costs and safety.  For example:
the average costs of removing, repairing, and reinserting a
gearbox in the US military fleet is $75K [7]; and nearly one-third
of all serious (Type-A) military helicopter accidents can be traced
to the drivetrain components [6].  A health prognosis system
which assists operators in determining the expected remaining
lifespan of the transmission components can both reduce costs by
requiring only condition-based maintenance (versus time-based
maintenance) and increase safety by detecting anomalies before
they can evolve to become catastrophic.

An active research program at the NASA Ames Research
Center [10] [11], in cooperation with its sister Lewis Research
Center, the Army Aviation and Troop Command, and the Naval
Air Systems Command, has been focused on the health and usage
monitoring of rotorcraft drivetrain assemblies.  As part of this
program, vibration data from both transmission testrigs and actual
vehicles have been collected and archived at Ames for analysis.

Vibration data from a controlled teststand for the intermediate
gearbox of a TH-1L helicopter was used to evaluate the
probabilistic methods presented in the previous section.  This so-
called Hollins Dataset [8] is well-suited for this evaluation
because it contains multiple sets of vibration data under healthy
conditions, plus five different types of gearbox faults (Figure 3).

Each of these test conditions was monitored by three
accelerometers mounted at various locations on the gearbox and
sampled at high rates during controlled experiments.  These

multiple looks at different types of faults have been concatenated
together into several larger data sets.  As such, they resemble a
series of short-term stationary processes and are thus ideal for
testing the efficacy of the system.

DATA LABEL CONDITION OF GEARBOX
B, C No Defect
D, E Inner Race Fault

F Rolling Element Fault
G, H Outer Race Fault

I Gear Spalls
J Half Gear Tooth Removed

FIGURE 3. Types of Faults in the Hollins Dataset

For the sake of brevity, details about the source data sets have
been omitted from this paper, but the reader is directed to
previous works that have used the same data set for similar
evaluations, for example, [9].  The original data was down-
sampled to speed-up processing, but the discarded samples
showed no effect on system performance except to lengthen the
necessary filter size.

5. RESULTS WITH TH-1L DATA

 Predictors were first trained with individual runs of healthy
and faulty vibration data sets with good results. Figure 4 shows
the predictor convergence for data set B, No Defect. The predictor
was m=16 stage with accumulated LMS error minimization
applied every 12 cycles.   The linear predictor tracked the system
well; similar results were achieved for the faulty data sets.

FIGURE 4. No Defect Example of Predictor Tracking Actual

To test the utility of the two error measures, non-stationarity in
the data was modeled by imposing a sharp discontinuity: a faulty
data set, specifically data set J, Half Gear Tooth Removed, was
appended to the data set B.  The predictor continued to adapt, but
as expected, its MSE increased dramatically (constrained only by
the lag in the mean term) before it could converge upon new
coefficients that represented the new system state.  The MSE
immediately before and after the data discontinuity is shown in
Figure 5.

Similarly, the confidence intervals expanded dramatically at
the discontinuity. This is shown directly below in Figure 6.  Once
MSE had settled to nearly its previous level, the confidence
intervals were reset (by hand) and recomputed.
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FIGURE 5. Changes in MSE at the Due to "Fault Insertion"
from No Defect (B) to Half Gear Tooth Removed (J)

FIGURE 6. Average Changes in (Normalized) Confidence
Intervals at the Same Transition

In Figure 6, the confidence intervals are represented by a
normalized average of the 17 coefficients in w.  Normalization
was first performed to represent each interval as a  percentage of
the individual coefficient.  The 17 normalized coefficients were
then averaged.  This, of course, gives a qualitative view of the
performance and is not truly indicative of how well the predictor
captured the underlying process.  Quantitative analyses of how
individual regressors can be mapped into a probability measure
are in development.

6. CONCLUSIONS & FUTURE WORK

This paper has illustrated a method of using both short-term
MSE and longer-term regressor confidence intervals as
probability measures on the performance on linear predictors.
The results so far — with real data relating to an important
problem — are appealing.  Still, there is important work ahead.

We are presently formulating the mathematical constructs that
map the error terms (MSE and regressor confidence intervals)
into a probability metric.  To facilitate this process, we are
examining normalized error (and N-LMS error minimization),
which should better lend itself to probability distributions. We
will broaden that work to formulate a high-dimensionality
probability function over parameter space that can be interpreted
to provide a likelihood estimate on predictor performance.

We are automating the transition between MSE and regressor
confidence intervals, for this particular application, in the hope
of better understanding the performance tradeoffs and inter-
dependencies of these two error terms.

Finally, we are applying these methods to other data sets in this
same problem domain that are naturally less stationary (i.e.,
possess more non-stationarities).  This work continues with the

support and resources of NASA and the US Army at Ames
Research Center with the goal of automating the prognosis of
rotorcraft drivetrains.
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