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ABSTRACT In this paper, we show that the Super-exponential algorithm

. . . ) proposed by Shalvi and Weinstein [9] also belongs to this same
This paper reviews the Super-exponential algorithm proposed byfamily of algorithms. Indeed, this already appeared in our previ-
Shalvi and Weinstein for blind channel equalization. We shov_v ous work [10] where we have shown that the convergent points of

that the algorithm coincides with a gradient search of a maxi- s algorithm correspond to the maximaf, () over the set of
mum of a cost function, which belongs to a family of functions  4ttainable combined channel-equalizer impulse responses.

very relevant in blind channel equalization. This family traces One important remaining question is whether, given an ini-

back to Donoho’s work on minimum entropy deconvolution, and i) condition, there exists any dependency between the trajectory
also underlies the Godard (or Constant Modulus) and the Shalvi- ¢ 4, super-exponential algorithm and that of the Godard or the

Weinstein algorithms. Using this gradient search interpretation, gp,a\yi-weinstein algorithm. That the super-exponential algorithm
we give a simple proof of convergence for the Super-exponential goas 5 maximum of, (-) does not allow one to deduce the do-

algorithm. Finally, we show that the gradient step-size choice giv- n5in of attraction of each maximum neither does it tell us how
ing rise to the super-exponential algorithm is optimal. these maxima are approached.

Section 4 is devoted to these questions. More explicitly, Prop-
1. INTRODUCTION erty 1 establishes the equivalence between the Super-exponential
algorithm and a gradient search method, within the set of attainable
Most of the recent development of second order statistics basedcombined channel-equalizer impulse responses. With this gradi-
methods for blind channel identification/equalization are supported €nt search interpretation, the analysis of convergence reduces to
by the Bezout identity [1]. This identity requires a multiple out- an analytical description of the error surface. Indeed, this study
put channel setting, corresponding to an array of sensors at théoecomes more classical although it may be a difficult task to ob-
receiver or induced by fractional sampling of the receiver's output tain an analytical parametrization of this error surface [11]. Inci-
[2]. Among the more popular of these methods are subspace methdentally, we give a simple proof of the convergence of the Super-
ods [1] and least-squares methods [3]. All these methods can claimexponential algorithm. Finally, we show in section 5 that the gradi-
perfect identification in academic situations: noise-free case andent step-size choice giving rise to the super-exponential algorithm
length and zero conditiorjs]. These conditions include the exact-  is optimal. Section 2 fixes the notations and presents the problem
order casei.e., the length of the identifier exactly matches that of statement. Section 3 reviews the Super-exponential algorithm.
the true channel. Now a recent study [4] shows that the perfor-
mance of these methods may degrade dramatically if the equalizer
length is either biggerdvermodeleylor smaller (indermodeled

tmhiret?eeallliesr:i%tzoorfc:irtlﬁ)slsgr:tljclecz{;tegflg ?Jfatl?zea:irgr? ;2?28;; tlgstgg?nThe problem under investigation is illustrated in figure 1 where we
! q assume that the channel impulse response isimitguration and

]Ehe rplnlmlzatlt)tn gr maX|m|zgt|otn _?_La Plgh_ler ofr?er ?_tatlstlcs cost that the noise is absent. We also assume the real case to simplify
unction seem to be more robust. The family of functions further the expressions.

2. PROBLEM STATEMENT

2p
m -
fa(x) = {'h;hzzp} y P=2,...,00, (1) @ | Channel Un Equalizer | ¥»

h(z) g2

which traces back to Donoho’s work [5], provides the most popu-
lar cost functions for blind channel equalization. For example, the
popular Godard algorithm [6] as well as the Shalvi-Weinstein al-
gorithm in [7] amount to seeking a maxmumﬁm‘(m). This then 1For the sake of simplicity, we assume that the channel impulse re-
shows that these two popular algorithms belong to a same fam-gpqnge is finite. However, all the subsequent developments remain valid

ily although they use different assumptions on the source signalin the infinite impulse response case provided the channel-equalizer com-
statistics [7], [8]. bined response be .

Figure 1: Blind channel equalization scheme




An unknown sequence of independent and identically distributed no loss of generality. These heuristic considerations led to the so-

signal,{a}, is sent through a single-inpi{-output channel

M
h(z) = Z hyz".
k=0

The channel is assumed to be stable but also unknown and possi

bly nonminimum phase. The received signal, observed attime
after demodulation and sampling, is theelement vectow,, =
> & hran_r. This signal is next applied to the input of aw-
input-single output equalizer of the forg(z) = Zf:o g,2"
to reduce the ISI. The output of the equalizgg, then reads as

L . .
Yn = D k—o 9rUn—k, Which can also be expressed in terms of the

source signab,
L
Yn = Z TpQn—k,
k=0

where{z } denotes the channel-equalizer combined response. This

combined response is obtained as the convolutiea g*xh which
translate in matrix form as
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involving the convolution matris{ associated witth(z).

3. THE SUPER EXPONENTIAL ALGORITHM

An ideal setting of the equalizer is one which brings the combined

T A
=e,,

response into a pinning vector form=1[---0_ 1 0---
p pinning [--01 0--]
n

corresponding to an samples pure delay, whergis any integer.
Recall that for a given vectas, its m** Hadamard exponent, de-
noted ass®™, is defined componentwise by

(sem)k = sp.
Now, observe that if the dominant term ®fis unique and in po-
sition n, then the ideal combined resporsemay be approached
by them'" Hadamard exponerftz/z,)°™ asm tends to infin-
ity. With this observation in mind, it is clear that4f> 1 is any
integer, then the iterative procedure

v= a:?kq) (3a)
14
a:(k+1) = m, (3b)

where the subscripfk) denotes the iteration number, converges
asymptotically ink to the ideal response,, when initialized by a
unit-norm response oy having a unique dominant termy,. One
may check that the subspace angle betwegnandx 1) is in-
sensitive to the choice of the norm in (3b); To simplify certain de-
velopments to follow, we may thus assuizenormalization with

called super-exponential algorithm proposed by Shalvi and Wein-
stein in the complex case [9].

Of course, since the combined response depends on the un-
available channel’'s impulse responhie the iterative procedure
in (3) is, in the form thus presented, only of academic interest.
Nonetheless, one can find in [9] how to implement the algorithm,
in terms of the adjustable equalizer's parameters and some statis-
tical cumulants of the observed data.

As the algorithm in (3) is design to converge to the ideal re-
sponsee,,, for somen, it tacitly assumes that this ideal response is
attainable. Otherwise, the algorithm would have no value. Now, it
is clear from (2) that the combined responsés restricted to the
range space of the convolution matfk In the sequel, we will
denoted this range space 8y : the vector subspace 6§, of at-
tainable combined responses. The orthogonal projection operator
ontoS4 is given by
Pa=HH H)THT, @)
where the symbo}# denotes the pseudo inversion operator.

The caseP4 = I means that it is always possible to find an
equalizer setting yielding any prescribed combined response. This
case will be termed thsufficient ordessetting. Such a configura-
tion is rarely met in practice, even in the fractionally-spaced case
(VN > 2), because of the real channel structure, which typically
exhibits long tails of small leading and trailing impulse response
terms (seee.g. [4]). Therefore, the situation wher@s # I is
more realistic. In this situation, the equalizer will be termed
dermodeledThe undermodeled case will, in general, preclude the
possibility of a given ideal combined resporsgbeing attainable.

To be consistent with this latter remark, the algorithm in (3)
must be modified as

v="Pa (m?k%) (5a)
v
L(k+1) = my (5b)

initialized byx oy € S4, such thaf|z || = 1. This latter version
of the algorithm, which also appears in [9], has been obtained in a
more constructive way in [10], as an iterative procedure for seeking
a local maximum of the family of objective functiorfs, (x).

In the next section, we will give a more direct interpretation of
the super-exponential algorithm in (5), by showing that it may be
written in a form of a gradient search algorithm.

4. A GRADIENT SEARCH METHOD

We recall that the directional derivative of a functipn R™ — R
(locally Lipschitzian) ate, in the directiond € R™ is

/ _ i, f@+td) — f(z)
f(z,d) _ltllrgf

If f is differentiable ate, then this directional derivative becomes
f'(z,d) = (Vf(z),d), whereV f(z) denotes the gradient gf

at the pointe. We proceed to introduce the concept of a projected
gradient which, naturally, extends that of a directional derivative
in a multi-directional setting. Le§ be a vector subspace Bf™

and letP be the orthogonal projection operator ostoThen, the



gradient of the functiorf in S, at a pointe € R™ is defined as

f,(m7p1)
Ve f(x) : :
(=, p,,)

wherep,, ..., p,, are the columns oP. If f is differentiable at
x, then
VI f(x) = PV (=),
and the gradienv® f(x) is simply the projection of the gradient
of f ontoS.
Now, we may show the following equivalence:

Property 1 The super-exponential algorithm in (5) with nor-
malization is equivalent to the gradient search algorithm

1
- — P.Vf . (ea
V=20 + 2pf2p($(k)) 4 pr(m(k)) (62)
174
Tle+1) = (6b)

Remark 1 If this algorithm is initialized by some un#;-norm
vectore gy € Sa, thenz ) is also of unit-norm and belongs to
S 4 for all iterations k.

Remark 2 Note that the cost function associated with the gradi-
ent algorithm (6) corresponds to the restrictiondn of the func-
tion fop () = log{ fop(x)}. Because of this restriction, a station-
ary point of the algorithm need not correspond to a local maximum
or a saddle point offs, (z) in the whole spac®”.

Remark 3 Note also that the cost function may be identified as
the restriction off»,(x) in Sa. In this case, a more general form
of the gradient algorithm reads as

v
v =xg, +HkVSAf2p(w(k))5 Tlet1) = vl

)

wherepy, is a variable step-size parameter. The super-exponential

algorithm corresponds to the choice

1

Pk = 57—
2p fop(T (1))

In the sequel, we sgt= 2p — 1.
Proof. Since the functionfz,(-) has to be maximized i§4, we
consider the gradient 4 f,(-):
-z
[lll3

Ogq

@
[EE

VSAfP(m) = PAvfp(m) = 2pPa (

To simplify further the expressions, let us fix the following
notations:

Ak 2 for(@y); o £ HPA (ma%) Hz’

and rewrite the gradient search algorithm (6) in a more compact
form

)

ARV = QT (k41) = AT (k) + Sk,

WhGFES(k) = 1/2pPAVf2p(a:(k)).

Having established that the super-exponential algorithm is a
gradient search method, we now use this interpretation to give a
simple proof of convergence. We have the following

Proposition 1 Let the two sequencés\t), ., and (ax),, de-
fined as above, be obtained at the successive iterations of (6). Then
we have the strict interlacing property

0 <A <ap < Aeg1 <aryr <1, (20)
and the inequality
)\k+1 — A > 2p(ak - )\k‘)y (11)

except whem ) is a stationary point, in which case we have the
chain of equalities\r, = ax = Ap+1 = Qk41.

Proof. Observe first that the boundedness of the two sequences by
1is a straightforward consequencs|af .|| = 1. Next, one may
verify directly from (1) thatV fo,(z) = 2p (7 — fop(z)z),

for any x such that|z||. = 1. For any suche, we then have the
orthogonality

(®,V fap(@)) = 2p (&, ") =2pfap(@)(z, &) = 0.
——
fap ()

This then impliesz 1), s(x)) = 0 and, applying the Pythagorian
theorem on eq.(9), we have

ailleginlls = Aillewlla+Ismwllz < ai = Ai+lswll,

which shows thatv,. > A, for all k unlesss ;) = 0.

We now establish the inequality (11) and next complete the
proof of the interlacing property (10). To proceed, let us write
x(r41) from (9) asx (1) x () + 8, Where we identify
Bk) = 2 8(k) — 2k, Since the functior - |[3% is convex,
its graph lies above its tangent hyperplane. Thereftug;,) +
8(ll5% is minorized by

IIw(k>||§§ + (Vllwemlliﬁ, 3(k))
lzyllzp + 2p(2 5, 8k))
Ak + 2p(a — Ag).

Aeg1 = 2@y + 3 lloh >
>
>

Each iteration of the gradient algorithm in equations (6a-6b), yields Tne strict inequality (11) then follows upon noting that the coinci-

avectore ;) € Sa satisfying||x)||2 = 1. Therefore, by using
the above expression of the gradient, one may rewrite (7)

o
Paz(] Tay A (w(k‘ﬂ)
vV =oy) + 3 7 = (8a)
lzmwllse  llzwlld  forlew)
Z (1) = v/||v]]2. (8b)

We recover the super-exponential algorithm given in (5a-5b).

dence set between the graph||of||§§ and its tangent hyperplane
atx i) does not contaifix 41, ||m(k+1)||§§) unlesss ;) = 0.
Finally, subtractingy,, from both sides of that inequality yields
>\k+1 > o + (Zp — 1)(ozk — /\k) > ap

which completes the proof. o
As the sequencé:), s, is strictly increasing and bounded,
we deduce the convergence of the algorithm. Besides, observe



that the interlacing property (10) shows that the two sequences 6. CONCLUDING REMARKS

(Ak)i>o and(awr), s, converge with the same rate at the same

limit. Onfortunalety, this observation does not allow one to deduce The super-exponential algorithm for blind channel equalization
the rate of convergence of the algorithm. Nonetheless, we shallhas been reviewed in the more realistic undermodeled case. In
show in the next section that the step-size associated in Remark 3 previous work, we have characterized the possible convergence
to the gradient algorithm in egs.(6) is optimal for the convergence points of this algorithm as the maxima of a memiyfep,(x), of a
speed. family of blind channel equalization criteria, including the popu-
lar Godard and Shalvi-Weinstein cost functions. More explicitly,
we have shown here, that this algorithm is equivalent to a gradient
search method. Using this interpretation, a simple proof of con-
As suggested in Remark 3, we consider the variable step-size graVergence has been given. Some issues concerning the convergence
dient algorithm given in egs.(7) and derive a bound for the range 'ate have also been considered. In particular, we have shown that
value of ;. ensuring the stability. We also show that the selection the variable step-size associated with the algorithm is optimal. We
of the step-size quoted in Remark 3 is optimal for the convergenceNave also given, for each iteration, a range value of the step-size
speed. These results are established in the following that guarantees the stability.

5. STABILITY BOUND AND CONVERGENCE SPEED

Theorem 1 Consider the variable step-size algorithm of egs.(7).
1. Iffor each iteratiork the step-sizg,, is chosen in the range

2
0 <~
SHES T
then the algorithm remains stable.
2. The choice 1
M = )\_k,

giving rise to the super-exponential algorithm, is optimal
for the convergence speed.

Proof: Lets )y = PaV fap(x(1)). We still have the orthogonality
property(s ), &(x)) = 0 so that we may write

. . . o0 A
Il =1+ pillswlls = 1+ pilai — A2) k. (12)

Setting3(;) = l;zk T + £ sy, allows one to re-write the

algorithm in the compact form
T(kt1) = T(k) + 8(k)-
Following the same steps as before, we have
Mt = Ak > 20(8(k), 2(15)-

A sufficient condition for the algorithm to remain stable is

AN
hie(pr) = (8ry, 2(3) > 0.

Now, one can verify easily that the expression of the function
hi(pr) is given by

hi(ui) = L&
kY

Using the definition ofy;, from (12), we deduce that for;, > 0,

hi(pe) 20 <= < ﬁ-
This completes the proof of part 1 of the theorem.

Part 2 of the theorem will be deduced from the simple ob-
servation that at each iteratidn the optimal value foyy, is the
one which maximizea,. (u ). Some straightforward algebra show
that the derivativeh), (1« ), of hi(-) reads as

(Ve + 1= Aepr).

al — A2
hig () = k,_yg (1= Aepr)-
k

Thus the choice, = i is optimal, and this completes the proof.

(10]

(11]
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