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ABSTRACT

This paper reviews the Super-exponential algorithm proposed by
Shalvi and Weinstein for blind channel equalization. We show
that the algorithm coincides with a gradient search of a maxi-
mum of a cost function, which belongs to a family of functions
very relevant in blind channel equalization. This family traces
back to Donoho’s work on minimum entropy deconvolution, and
also underlies the Godard (or Constant Modulus) and the Shalvi-
Weinstein algorithms. Using this gradient search interpretation,
we give a simple proof of convergence for the Super-exponential
algorithm. Finally, we show that the gradient step-size choice giv-
ing rise to the super-exponential algorithm is optimal.

1. INTRODUCTION

Most of the recent development of second order statistics based
methods for blind channel identification/equalization are supported
by the Bezout identity [1]. This identity requires a multiple out-
put channel setting, corresponding to an array of sensors at the
receiver or induced by fractional sampling of the receiver’s output
[2]. Among the more popular of these methods are subspace meth-
ods [1] and least-squares methods [3]. All these methods can claim
perfect identification in academic situations: noise-free case and
length and zero conditions[1]. These conditions include the exact-
order case,i.e., the length of the identifier exactly matches that of
the true channel. Now a recent study [4] shows that the perfor-
mance of these methods may degrade dramatically if the equalizer
length is either bigger (overmodeled) or smaller (undermodeled)
than the length of the significant part of the true channel. In these
more realistic conditions, the direct equalization methods based on
the minimization or maximization of a higher order statistics cost
function seem to be more robust. The family of functions

f2p(x) =

�
kxk2p
kxk2

�2p
; p = 2; : : : ;1; (1)

which traces back to Donoho’s work [5], provides the most popu-
lar cost functions for blind channel equalization. For example, the
popular Godard algorithm [6] as well as the Shalvi-Weinstein al-
gorithm in [7] amount to seeking a maximum off4(x). This then
shows that these two popular algorithms belong to a same fam-
ily although they use different assumptions on the source signal
statistics [7], [8].

In this paper, we show that the Super-exponential algorithm
proposed by Shalvi and Weinstein [9] also belongs to this same
family of algorithms. Indeed, this already appeared in our previ-
ous work [10] where we have shown that the convergent points of
this algorithm correspond to the maxima off2p(�) over the set of
attainable combined channel-equalizer impulse responses.

One important remaining question is whether, given an ini-
tial condition, there exists any dependency between the trajectory
of the super-exponential algorithm and that of the Godard or the
Shalvi-Weinstein algorithm. That the super-exponential algorithm
seeks a maximum off2p(�) does not allow one to deduce the do-
main of attraction of each maximum neither does it tell us how
these maxima are approached.

Section 4 is devoted to these questions. More explicitly, Prop-
erty 1 establishes the equivalence between the Super-exponential
algorithm and a gradient search method, within the set of attainable
combined channel-equalizer impulse responses. With this gradi-
ent search interpretation, the analysis of convergence reduces to
an analytical description of the error surface. Indeed, this study
becomes more classical although it may be a difficult task to ob-
tain an analytical parametrization of this error surface [11]. Inci-
dentally, we give a simple proof of the convergence of the Super-
exponential algorithm. Finally, we show in section 5 that the gradi-
ent step-size choice giving rise to the super-exponential algorithm
is optimal. Section 2 fixes the notations and presents the problem
statement. Section 3 reviews the Super-exponential algorithm.

2. PROBLEM STATEMENT

The problem under investigation is illustrated in figure 1 where we
assume that the channel impulse response is finite1 in duration and
that the noise is absent. We also assume the real case to simplify
further the expressions.
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Figure 1: Blind channel equalization scheme

1For the sake of simplicity, we assume that the channel impulse re-
sponse is finite. However, all the subsequent developments remain valid
in the infinite impulse response case provided the channel-equalizer com-
bined response be iǹ2.



An unknown sequence of independent and identically distributed
signal,fakg, is sent through a single-input-N -output channel

h(z) =
MX
k=0

hkz
k:

The channel is assumed to be stable but also unknown and possi-
bly nonminimum phase. The received signal, observed at timen
after demodulation and sampling, is theN element vectorun =P

k hkan�k: This signal is next applied to the input of anN -
input-single output equalizer of the formg(z) =

PL
k=0 gkz

k

to reduce the ISI. The output of the equalizer,yn, then reads as
yn =

PL

k=0 gkun�k; which can also be expressed in terms of the
source signalan

yn =

LX
k=0

xkan�k;

wherefxkg denotes the channel-equalizer combined response. This
combined response is obtained as the convolutionx = g?hwhich
translate in matrix form as
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involving the convolution matrixH associated withh(z).

3. THE SUPER EXPONENTIAL ALGORITHM

An ideal setting of the equalizer is one which brings the combined

response into a pinning vector formx = [� � � 0 1|{z}
n

0 � � � ]T
4
= en;

corresponding to ann samples pure delay, wheren is any integer.
Recall that for a given vectors, its mth Hadamard exponent, de-
noted ass�m, is defined componentwise by�

s
�m�

k
= smk :

Now, observe that if the dominant term ofx is unique and in po-
sitionn, then the ideal combined responseen may be approached
by themth Hadamard exponent(x=xn)�m asm tends to infin-
ity. With this observation in mind, it is clear that ifq > 1 is any
integer, then the iterative procedure

� = x
�q
(k) (3a)

x(k+1) =
�

k�k
; (3b)

where the subscript(k) denotes the iteration number, converges
asymptotically ink to the ideal responseen, when initialized by a
unit-norm responsex(0) having a unique dominant termxn. One
may check that the subspace angle betweenx(k) andx(k+1) is in-
sensitive to the choice of the norm in (3b); To simplify certain de-
velopments to follow, we may thus assume`2 normalization with

no loss of generality. These heuristic considerations led to the so-
called super-exponential algorithm proposed by Shalvi and Wein-
stein in the complex case [9].

Of course, since the combined response depends on the un-
available channel’s impulse responseh, the iterative procedure
in (3) is, in the form thus presented, only of academic interest.
Nonetheless, one can find in [9] how to implement the algorithm,
in terms of the adjustable equalizer’s parameters and some statis-
tical cumulants of the observed data.

As the algorithm in (3) is design to converge to the ideal re-
sponseen, for somen, it tacitly assumes that this ideal response is
attainable. Otherwise, the algorithm would have no value. Now, it
is clear from (2) that the combined responsex is restricted to the
range space of the convolution matrixH. In the sequel, we will
denoted this range space bySA: the vector subspace of`2, of at-
tainable combined responses. The orthogonal projection operator
ontoSA is given by

PA = H(HTH)#HT ; (4)

where the symbol# denotes the pseudo inversion operator.
The casePA = I means that it is always possible to find an

equalizer setting yielding any prescribed combined response. This
case will be termed thesufficient ordersetting. Such a configura-
tion is rarely met in practice, even in the fractionally-spaced case
(N � 2), because of the real channel structure, which typically
exhibits long tails of small leading and trailing impulse response
terms (seee.g. [4]). Therefore, the situation wherePA 6= I is
more realistic. In this situation, the equalizer will be termedun-
dermodeled. The undermodeled case will, in general, preclude the
possibility of a given ideal combined responseen being attainable.

To be consistent with this latter remark, the algorithm in (3)
must be modified as

� = PA
�
x
�q

(k)

�
(5a)

x(k+1) =
�

k�k
; (5b)

initialized byx(0) 2 SA, such thatkx(0)k = 1. This latter version
of the algorithm, which also appears in [9], has been obtained in a
more constructive way in [10], as an iterative procedure for seeking
a local maximum of the family of objective functionsf2p(x).

In the next section, we will give a more direct interpretation of
the super-exponential algorithm in (5), by showing that it may be
written in a form of a gradient search algorithm.

4. A GRADIENT SEARCH METHOD

We recall that the directional derivative of a functionf : Rm ! R

(locally Lipschitzian) atx, in the directiond 2 Rm is

f 0(x;d) = lim
t#0

f(x+ td)� f(x)

t

If f is differentiable atx, then this directional derivative becomes
f 0(x;d) = hrf(x);di; whererf(x) denotes the gradient off
at the pointx. We proceed to introduce the concept of a projected
gradient which, naturally, extends that of a directional derivative
in a multi-directional setting. LetS be a vector subspace ofRm

and letP be the orthogonal projection operator ontoS. Then, the



gradient of the functionf in S, at a pointx 2 Rm is defined as

rSf(x) =

2
64

f 0(x;p1)
...

f 0(x;pm)

3
75 ;

wherep1; : : : ; pm are the columns ofP. If f is differentiable at
x, then

rSf(x) = Prf(x);

and the gradientrSf(x) is simply the projection of the gradient
of f ontoS.

Now, we may show the following equivalence:

Property 1 The super-exponential algorithm in (5) with`2 nor-
malization is equivalent to the gradient search algorithm

� = x(k) +
1

2pf2p(x(k))
PArf2p(x(k)); (6a)

x(k+1) =
�

k�k2
: (6b)

Remark 1 If this algorithm is initialized by some unit̀2-norm
vectorx(0) 2 SA, thenx(k) is also of unit-norm and belongs to
SA for all iterationsk.

Remark 2 Note that the cost function associated with the gradi-
ent algorithm (6) corresponds to the restriction inSA of the func-
tion ~f2p(x) = logff2p(x)g. Because of this restriction, a station-
ary point of the algorithm need not correspond to a local maximum
or a saddle point of~f2p(x) in the whole spaceRL .

Remark 3 Note also that the cost function may be identified as
the restriction off2p(x) in SA. In this case, a more general form
of the gradient algorithm reads as

� = x(k) + �kr
SAf2p(x(k)); x(k+1) =

�

k�k2
; (7)

where�k is a variable step-size parameter. The super-exponential
algorithm corresponds to the choice

�k =
1

2pf2p(x(k))
:

In the sequel, we setq = 2p� 1.
Proof: Since the function~f2p(�) has to be maximized inSA, we
consider the gradientrSA ~fp(�):

rSA ~fp(x) = PAr ~fp(x) = 2pPA

 
x�q

kxk2p2p
�

x

kxk22

!

Each iteration of the gradient algorithm in equations (6a-6b), yields
a vectorx(k) 2 SA satisfyingkx(k)k2 = 1. Therefore, by using
the above expression of the gradient, one may rewrite (7)

� = x(k) +
PAx

�q
(k)

kx(k)k
2p
2p

�
x(k)

kx(k)k22
=
PA
�
x
�q

(k)

�
f2p(x(k))

(8a)

x(k+1) = �=k�k2: (8b)

We recover the super-exponential algorithm given in (5a-5b).�

To simplify further the expressions, let us fix the following
notations:

�k
4
= f2p(x(k)); �k

4
=



PA �x�q(k)�




2
;

and rewrite the gradient search algorithm (6) in a more compact
form

�k� = �kx(k+1) = �kx(k) + sk; (9)

wheres(k) = 1=2pPArf2p(x(k)):
Having established that the super-exponential algorithm is a

gradient search method, we now use this interpretation to give a
simple proof of convergence. We have the following

Proposition 1 Let the two sequences(�k)k�0 and (�k)k�0 de-
fined as above, be obtained at the successive iterations of (6). Then
we have the strict interlacing property

0 < �k < �k < �k+1 < �k+1 � 1; (10)

and the inequality

�k+1 � �k > 2p(�k � �k); (11)

except whenx(k) is a stationary point, in which case we have the
chain of equalities�k = �k = �k+1 = �k+1.

Proof: Observe first that the boundedness of the two sequences by
1 is a straightforward consequence ofkx(k)k2 = 1. Next, one may
verify directly from (1) thatrf2p(x) = 2p

�
x�q � f2p(x)x

�
;

for anyx such thatkxk2 = 1. For any suchx, we then have the
orthogonality

hx;rf2p(x)i = 2p hx;x�qi| {z }
f2p(x)

�2pf2p(x)hx;xi = 0:

This then implieshx(k); s(k)i = 0 and, applying the Pythagorian
theorem on eq.(9), we have

�2kkx(k+1)k
2
2 = �2kkx(k)k

2
2+ks(k)k

2
2 () �2k = �2k+ks(k)k

2
2;

which shows that�k > �k for all k unlesss(k) = 0.
We now establish the inequality (11) and next complete the

proof of the interlacing property (10). To proceed, let us write
x(k+1) from (9) asx(k+1) = x(k) + ~s(k); where we identify
~s(k) =

1
�k
s(k)�

�k��k
�k

x(k). Since the functionk�k2p2p is convex,
its graph lies above its tangent hyperplane. Therefore,kx(k) +

~s(k)k
2p
2p is minorized by

�k+1 = kx(k) + ~s(k)k
2p
2p � kx(k)k

2p
2p + hrkx(k)k

2p
2p; ~s(k)i

� kx(k)k
2p
2p + 2phx�q

(k)
; ~s(k)i

� �k + 2p(�k � �k):

The strict inequality (11) then follows upon noting that the coinci-
dence set between the graph ofk � k2p2p and its tangent hyperplane

atx(k) does not contain(x(k+1); kx(k+1)k
2p
2p) unless~s(k) = 0.

Finally, subtracting�k from both sides of that inequality yields

�k+1 > �k + (2p� 1)(�k � �k) > �k

which completes the proof. �
As the sequence(�k)k�0 is strictly increasing and bounded,

we deduce the convergence of the algorithm. Besides, observe



that the interlacing property (10) shows that the two sequences
(�k)k�0 and (�k)k�0 converge with the same rate at the same
limit. Unfortunalety, this observation does not allow one to deduce
the rate of convergence of the algorithm. Nonetheless, we shall
show in the next section that the step-size associated in Remark 3
to the gradient algorithm in eqs.(6) is optimal for the convergence
speed.

5. STABILITY BOUND AND CONVERGENCE SPEED

As suggested in Remark 3, we consider the variable step-size gra-
dient algorithm given in eqs.(7) and derive a bound for the range
value of�k ensuring the stability. We also show that the selection
of the step-size quoted in Remark 3 is optimal for the convergence
speed. These results are established in the following

Theorem 1 Consider the variable step-size algorithm of eqs.(7).

1. If for each iterationk the step-size�k is chosen in the range

0 < �k �
2�k

2�2k � �2k

then the algorithm remains stable.

2. The choice

�k =
1

�k
;

giving rise to the super-exponential algorithm, is optimal
for the convergence speed.

Proof: Lets(k) = PArf2p(x(k)). We still have the orthogonality
propertyhs(k);x(k)i = 0 so that we may write

k�k22 = 1 + �2kks(k)k
2
2 = 1 + �2k(�

2
k � �2k)

4
= 
2k: (12)

Setting~s(k) = 1�
k

k

x(k) +
�k

k
s(k); allows one to re-write the

algorithm in the compact form

x(k+1) = x(k) + ~s(k):

Following the same steps as before, we have

�k+1 � �k � 2ph~s(k);x
�q
(k)i:

A sufficient condition for the algorithm to remain stable is

hk(�k)
4
= h~s(k);x

�q
(k)i � 0:

Now, one can verify easily that the expression of the function
hk(�k) is given by

hk(�k) =

k � 1

�k
k
(
k + 1� �k�k):

Using the definition of
k from (12), we deduce that for�k > 0,

hk(�k) � 0 () �k �
2�k

2�2k � �2k
:

This completes the proof of part 1 of the theorem.
Part 2 of the theorem will be deduced from the simple ob-

servation that at each iterationk, the optimal value for�k is the
one which maximizeshk(�k). Some straightforward algebra show
that the derivative,h0k(�k), of hk(�) reads as

h0k(�k) =
�2k � �2k


3k
(1� �k�k):

Thus the choice�k = 1
�k

is optimal, and this completes the proof.

6. CONCLUDING REMARKS

The super-exponential algorithm for blind channel equalization
has been reviewed in the more realistic undermodeled case. In
a previous work, we have characterized the possible convergence
points of this algorithm as the maxima of a member,f2p(x), of a
family of blind channel equalization criteria, including the popu-
lar Godard and Shalvi-Weinstein cost functions. More explicitly,
we have shown here, that this algorithm is equivalent to a gradient
search method. Using this interpretation, a simple proof of con-
vergence has been given. Some issues concerning the convergence
rate have also been considered. In particular, we have shown that
the variable step-size associated with the algorithm is optimal. We
have also given, for each iteration, a range value of the step-size
that guarantees the stability.
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