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ABSTRACT

We propose a framework of performance measures for ana-
lyzing estimators of geometrical vectors that have intuitive
physical interpretations, are independent of the coordinate
frame and parameterization, and have no artificial singular-
ities. We obtain finite-sample and asymptotic lower bounds
on them for large classes of estimators and show how they
may be used as system design criteria. We determine a
simple asymptotic relationship that is applicable to both the
measures and their bounds.

1. INTRODUCTION

The need to estimate a (3D) geometrical vector quantity, i.e.
one whose magnitude and direction are meaningful quanti-
ties in the context of the application, arises in many signal
processing problems. For example, determination of a vec-
tor representing location or bearing is the focus of many
radar [1], sonar [2], and mobile communications problems
[3], a velocity vector is required in target tracking, and a
vector dipole moment is an unknown of interest in magne-
toencephalography [4]. For an estimate of such a vector, the
usual mean-square error (MSE) matrix, which indicates the
variability in the individual coordinates, may not be a very
intuitive measure of performance. Furthermore, it is depen-
dent upon the choice of reference coordinate frame. More
generally, the unknown vector is described by a parameter
vector� that itself has no physical interpretation and may
contain artificial singularities, e.g. spherical coordinates.
Again, the MSE matrix of the parameter vector is depen-
dent on the reference coordinate frame, and may become
non-singular because of the singularities.
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In this paper, we construct a unified framework for the anal-
ysis of errors that occur in estimating a vector through a
set of geometrically-based error measures. These measures
are more physically appealing and intuitive than the MSE
matrix, do not contain artificial singularities, and are refer-
enced to the unknown vector, so ensuring they are indepen-
dent of rotations in the observer’s coordinate system. We
consider three error measures: mean-square error length
(MSEL), mean-square angular error (MSAE), and mean-
square range error (MSRE). We derive lower bounds on the
asymptotic normalized version of these quantities, holding
for large classes of estimators, that are expressed in terms
of the Cramér-Rao bound (CRB) on the parameter vector
�. The classes of estimators for which they hold are de-
scribed in terms of conditions on the bias and bias gradient
of each estimator. We also show that these bounds have a
finite sample equivalent for the class of unbiased estimators.
We obtain simplified expressions for orthogonal curvilinear
parameterizations of the geometrical vector and illustrate
the results using spherical coordinates. The analysis is per-
formed under the assumptions of both known (e.g. finding
the direction to a far-field source) and unknown (e.g. find-
ing the direction and range of a near-field source) length. A
simple relationship is derived between the error measures
that holds asymptotically. Finally, we discuss the use of
these measures and their bounds for system design.

The MSAE was introduced in [1] for a unit length vector
expressed in spherical coordinates and an asymptotic bound
was derived. The MSEL for unbiased estimators was con-
sidered in [4]. Note that although geometrical interpreta-
tions of vectors are most obvious in three dimensions, the
error measures we examine throughout this paper are still
useful for their coordinate independence and lack of arti-
ficial singularities. Indeed our results are applicable in an
arbitrary number of dimensions.



2. MODELS, MEASURES, AND BOUNDS

We assume that we haveN measurement snapshotsfyigNi=1
that are independent identically distributed (i.i.d) with a dis-
tribution that is parameterized by a vector�. Let us suppose
that the vector quantity of interestv 2 Rd is a function of
a subset� of these parameters. Therefore, as far as we are
concerned the remaining parameters are nuisance parame-
ters. For example, if we are interested in the location of a
moving radar target, the parameters of interest are the az-
imuth and elevation of the return and its time delay. The
Doppler shift, attenuation coefficient, and any parameters
that describe the noise statistics are nuisance parameters [5].
We suppose that the distribution ofy and its parameteriza-
tion satisfies enough regularity conditions so that the Fisher
Information Matrix (FIM) exists and is non-singular.

2.1. Mean-Square Error Length

Supposêv 2 Rd is an estimator ofv. The mean-square
error length (MSEL) is defined as the mean-square value of
the length of the error vector,

MSEL
4
=E j�vj2; (2.1)

where�v =
4
=v̂ � v. It provides a single, overall mea-

sure of estimation performance, has no artificial singulari-
ties, and is independent of the reference coordinate frame.

Let v̂ have expected valueE v̂
4
= �v = v + �, where� rep-

resents bias, and we have suppressed dependence on� for
simplicity of notation. The model and estimator must be
such thatv and� are differentiable with respect to� and the
mild regularity conditions [7], pp. 65, are satisfied. Then
the covariance matrix of̂v satisfies

E(v̂ � �v)(v̂ � �v)T � @�v

@�
CRB(�)

@�v

@�

T

; (2.2)

where CRB(�) is the block of CRB(�) corresponding to
those parameters that describev. Of course, the entries of
CRB(�) are generally dependent on the nuisance parame-
ters. Note that [8] gives a procedure to calculate CRB(�)
that avoids inversion of the full FIM and instead only re-
quires inversion of a matrix equal to the dimension of�.
The mean-square error matrix thus satisfies

E�v�vT � @�v

@�
CRB(�)

@�v

@�

T

+ ��T : (2.3)

The MSEL is just the trace ofE�v�vT so

MSEL� tr

(
@v

@�
CRB(�)

@v

@�

T
)
+ j�j2

+O

�
@�

@�
CRB(�)

�
: (2.4)

We now suppose the bias satisfies

� = o(1=
p
N)

@�=@� = o(1):
(2.5)

Since the data consists of i.i.d. snapshots, CRB(�) is pro-
portional to1=N . Therefore, under condition (2.5)

MSEL� tr

(
@v

@�
CRB(�)

@v

@�

T
)
+ o(1=N): (2.6)

Condition (2.5) essentially describes the class of all asymp-
totically unbiased estimators whose asymptotic performance
is limited by their stochastic variability rather than their
bias and whose expected values exhibit a certain degree of
smoothness with respect to changes in the unknown param-
eter.

Define the asymptotic normalized mean-square error length
as

MSEL1
4
= lim

N!1
NfE j�vj2g: (2.7)

Normalizing and taking limits of (2.6) asN ! 1 we see
that for any estimator satisfying (2.5)

MSEL1 � MSELB
4
=N tr

(
@v

@�
CRB(�)

@v

@�

T
)
: (2.8)

Note that this bound is independent ofN , assuming i.i.d.
snapshots. Since it is derived from the CRB, it will be tight
for any asymptotically efficient estimator. There is an anal-
ogous finite-sample result for the smaller class of unbiased
estimators. Specifically, if̂v is a (locally) unbiased estima-
tor of v, i.e � and@�=� are zero for all values (in a neigh-
borhood) of�, then MSEL� MSELB=N . Note that the
asymptotic bound is equal to the finite-sample bound for a
single snapshot.

2.1.1. Orthogonal Curvilinear Parameterizations

Most common parameterizations of a 3D vector, including
spherical coordinates, circular and elliptic cylinder coor-
dinates, parabolic coordinates, and prolate spheroidal co-
ordinates, are examples of orthogonal curvilinear coordi-
nate systems. Such a parameterization is characterized by



the fact that its Jacobian@v=@� has orthogonal columns.
Therefore, if we denote thej; kth entry of CRB(�) byCjk ,
equation (2.8) simplifies to

MSELB = N

3X
j=1

h2jCjj (2.9)

wherehj = j@v=@�j j is called the scale factor for theith
coordinate [9]. For example, in spherical coordinates (2.9)
becomes

MSELB = NfCRB(r) + r2 cos2  CRB(�) + r2CRB( )g;
(2.10)

wherer, �, and are the length, azimuth, and elevation,
respectively.

2.2. Mean-Square Angular Error

In some applications, e.g. radar or sonar target localization,
separate characterizations of the error in the bearing and the
range can be very informative. In this section we consider
the mean-square angular error (MSAE), introduced in [1]
for a unit vector in spherical coordinates and used as an ar-
ray design criterion in [10]. The MSAE is defined asE 
2,
where
 2 [0; �] is the angle between̂v andv.

Consider the normalized vectoru
4
=v=r and the normalized

estimatêu
4
= v̂=r̂, wherer andr̂ are the lengths ofv andv̂,

respectively. Now


 = 2 sin�1
j�vj
2

; (2.11)

where�u = û� u. Using a standard expansion forsin�1

the squared angular error is


2 = j�uj2=r2 +O(j�uj4): (2.12)

All terms in the expansion are positive so truncating the se-
ries at any point gives a lower bound on
2. In particular
j�uj2 is a lower bound for
2. Geometrically speaking,�u
is the chord of the unit circle joining the tips ofu andû, and
r2
2 is the arc length. Therefore, assuming thatE j�uj4,
and all higher order moments ofj�uj, areo(1=N),

MSAE = E j�uj2 + o(1=N): (2.13)

The moment condition is clearly satisfied whenE j�vj4 is
o(1=N), however, this is not necessary; consider, for ex-
ample, an estimator whose error is asymptotically due to
inaccuracies in range rather than bearing. Following similar
reasoning to Section 2.1,

E j�uj2 � tr

(
@u

@�
CRB(�)

@u

@�

T
)
+ o(1=N); (2.14)

if �
u
= o(1=

p
N) and@�

u
=@� = o(1), where�

u
is the bias

of û considered as an estimate ofu. Condition (2.5) is suf-
ficient, but again not necessary, for this to hold. Therefore,
defining the asymptotic normalized MSAE and its bounds
in the obvious way, we have that

MSAE1
4
= lim

N!1
N E 


2 � MSAEB

4
=N tr

�
@(v=r)

@�
CRB(�)

@(vT=r)

@�

�
: (2.15)

This bounds applies to, at least, all estimators satisfying
(2.5) and having a fourth order momentE j�vj4 = o(1=N).
The finite-snapshot version of (2.15) requires thatE(v̂=r̂)
be an unbiased estimator ofv=r, in which case the MSAE
is bounded by MSAEB=N for all N . This is not implied
by the unbiasedness ofv̂, so, in general the bounds on the
MSEL and on the MSAE do not simultaneously hold for a
finite number of snapshots.

Using spherical coordinates, for example, (2.15) becomes

MSAEB = Nfcos2  CRB(�) + CRB( )g: (2.16)

This is the expression obtained in [1] for a unit length es-
timate of a unit length vector. However, note that although
r does not appear in (2.16) it is not necessarily independent
of the length ofv, since CRB(�) and CRB( ) may depend
on it.

If the length ofv is known, e.g. the distance to the target
is known or the source is far-field so thatv is taken to be a
unit vector, then it is natural to constrainv̂ to have the same
length. In that case,�u = �v=r and it follows that, under
(2.5),

MSAE1 = MSEL1=r2; (2.17)

if E j�vj4 = o(1=N), with a similar expression for the
bound MSAEB in terms of MSELB.

2.3. Mean-Square Range Error

The MSRE is defined as

MSRE
4
=E�r2; (2.18)

where�r = r̂�r. By considerinĝr as an estimate ofr with
bias�r, we can follow a similar development to Section 2.1
to find that

MSRE� @r

@�T
CRB(�)

@r

@�
+ o(1=N); (2.19)

assuming that�r is o(1=
p
N) and@�r=@� is o(1). It can be

shown that these are satisfied if (2.5) holds and, in addition,



E(j�vj2) = o(1=
p
N) and@ E j�vjk=@� = o(1) for all

k � 2 [11]. Defining the asymptotic normalized MSRE in
the obvious manner, (2.19) shows that

MSRE1 � MSREB
4
=N

@r

@�T
CRB(�)

@r

@�
: (2.20)

Furthermore, if̂r is an unbiased estimate ofr, then MSRE�
MSREB=N for all N . For the spherical coordinate system
MSREB = NCRB(r).

2.4. Asymptotic Relationships and System Design

We have already seen that a simple relationship (2.17) ex-
ists betweenMSAE1 andMSEL1 (and between their
bounds MSAEB and MSELB) whenr is known. When the
length ofv is unknown, a relationship can be obtained be-
tweenMSEL1,MSAE1, and MSRE1 for any estimator
such thatE(j�vj4), and higher moments, areo(1=N). In
[11] we show that this relationship is

MSEL1 = MSRE1 + r2MSAE1 (2.21)

A similar relationship holds for the bounds on these quan-
tities. However,̂v does not need to be asymptotically effi-
cient, in the sense that the performance measures we discuss
attain their bounds asN !1, in order for (2.21) to hold.

2.5. System Design

The bound MSELB provides a single algorithm-independent
measure of performance and as such is a suitable criterion
function for system design. Since it depends on� (and pos-
sibly other nuisance parameters) we can either minimize it
for a particulara priori likely value of� as in [4], or we can
take a Bayesian approach and minimize a weighted average
over the parameter space. Equation (2.21) shows that it is
just a particular linear combination of MSAEB and MSREB,
therefore, more generally we can use a linear combination
of MSAEB and MSREB chosen so as to reflect the relative
importance of angle and range estimates in the application.

3. CONCLUSION

We have constructed a unified framework for the analysis of
errors obtained in estimating geometrical vectors. We pre-
sented a number of error measures that are more physically
meaningful than the standard covariance matrix. In addition
these measures are independent of the coordinate reference
frame and do not contain artificial singularities. We derived
finite sample and asymptotic bounds on these measures for
large classes of estimators, and showed how they are related.
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