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ABSTRACT In this paper, we construct a unified framework for the anal-
ysis of errors that occur in estimating a vector through a
We propose a framework of performance measures for anaset of geometrically-based error measures. These measures
lyzing estimators of geometrical vectors that have intuitive are more physically appealing and intuitive than the MSE
physical interpretations, are independent of the coordinatematrix, do not contain artificial singularities, and are refer-
frame and parameterization, and have no artificial singular-enced to the unknown vector, so ensuring they are indepen-
ities. We obtain finite-sample and asymptotic lower bounds dent of rotations in the observer's coordinate system. We
on them for large classes of estimators and show how theyconsider three error measures: mean-square error length
may be used as system design criteria. We determine §MSEL), mean-square angular error (MSAE), and mean-
simple asymptotic relationship that is applicable to both the square range error (MSRE). We derive lower bounds on the
measures and their bounds. asymptotic normalized version of these quantities, holding
for large classes of estimators, that are expressed in terms
of the Craner-Rao bound@RB) on the parameter vector
6. The classes of estimators for which they hold are de-
1. INTRODUCTION scribed in terms of conditions on the bias and bias gradient
of each estimator. We also show that these bounds have a
The need to estimate a (3D) geometrical vector quantity, i.e.finite sample equivalent for the class of unbiased estimators.
one whose magnitude and direction are meaningful quanti-We obtain simplified expressions for orthogonal curvilinear
ties in the context of the application, arises in many signal parameterizations of the geometrical vector and illustrate
processing problems. For example, determination of a vec-the results using spherical coordinates. The analysis is per-
tor representing location or bearing is the focus of many formed under the assumptions of both known (e.g. finding
radar [1], sonar [2], and mobile communications problems the direction to a far-field source) and unknown (e.g. find-
[3], a velocity vector is required in target tracking, and a ing the direction and range of a near-field source) length. A
vector dipole moment is an unknown of interest in magne- simple relationship is derived between the error measures
toencephalography [4]. For an estimate of such a vector, thethat holds asymptotically. Finally, we discuss the use of
usual mean-square error (MSE) matrix, which indicates the these measures and their bounds for system design.
variability in the individual coordinates, may not be a very
intuitive measure of performance. Furthermore, it is depen-
dent upon the choice of reference coordinate frame. More
generally, the unknown vector is described by a parameter
vector@ that itself has no physical interpretation and may The MSAE was introduced in [1] for a unit length vector
contain artificial singularities, e.g. spherical coordinates. expressed in spherical coordinates and an asymptotic bound
Again, the MSE matrix of the parameter vector is depen- was derived. The MSEL for unbiased estimators was con-
dent on the reference coordinate frame, and may becomsaidered in [4]. Note that although geometrical interpreta-
non-singular because of the singularities. tions of vectors are most obvious in three dimensions, the
error measures we examine throughout this paper are still
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2. MODELS, MEASURES, AND BOUNDS The MSEL is just the trace af AvAv® so

T
We assume that we hawémeasurement snapshéig, } ¥, MSEL > tr {%CRB(H)% } + lef®
that are independentidentically distributed (i.i.d) with a dis-
tribution that is parameterized by a vectprlLet us suppose Oe
that the vector quantity of intereste R is a function of +0 (%CRB(9)> ’ (24)
a subse® of these parameters. Therefore, as far as we are ] o
concerned the remaining parameters are nuisance paramé&/e NOW suppose the bias satisfies
ters. For example, if we are interested in the location of a — o(1/VN
moving radar target, the parameters of interest are the az- e =0(1/VNN) (2.5)

imuth and elevation of the return and its time delay. The 9€/06 = o(1).
Doppler shift, attenuation coefficient, and any parameters
that describe the noise statistics are nuisance parameters [5]:
We suppose that the distribution gfand its parameteriza-
tion satisfies enough regularity conditions so that the Fisher ovT

Information Matrix (FIM) exists and is hon-singular. MSEL > tr {%CRB(G)% } +o(1/N). (2.6)

ince the data consists of i.i.d. snapshots, (#Bs pro-
ortional tol/N. Therefore, under condition (2.5)

Condition (2.5) essentially describes the class of all asymp-
totically unbiased estimators whose asymptotic performance
2.1. Mean-Square Error Length is limited by their stochastic variability rather than their
bias and whose expected values exhibit a certain degree of
Supposes € R? is an estimator ob. The mean-square smoothness with respect to changes in the unknown param-
error length (MSEL) is defined as the mean-square value ofeter.
the length of the error vector,
Define the asymptotic normalized mean-square error length

MSEL £ E |Av|?, 1

MSEL. £ lim N{E|Av[?}. 2.7)
VANIN . . N — o0
whereAv = =v — v. It provides a single, overall mea-
sure of estimation performance, has no artificial singulari- Normalizing and taking limits of (2.6) a& — oo we see
ties, and is independent of the reference coordinate frame. that for any estimator satisfying (2.5)

A Ov o™
Let & have expected valug & = & = v + €, wheree rep- MSEL., > MSEL; = N tr {%CRB(O)% } - (2.8)

resents bias, and we have suppressed depender@éoon

simplicity of notation. The model and estimator must be Note that this bound is independent & assuming i.i.d.
such thaw ande are differentiable with respect ®and the  snapshots. Since it is derived from the CRB, it will be tight
mild regularity conditions [7], pp. 65, are satisfied. Then for any asymptotically efficient estimator. There is an anal-

the covariance matrix af satisfies ogous finite-sample result for the smaller class of unbiased
B o estimators. Specifically, i is a (locally) unbiased estima-
(6 — 5)( — 8)7 > 8—UCRB(0)8—U (2.2) torofw, ieeandde/@ are zero for all values (in a neigh-
~ 00 20 ’ borhood) off, then MSEL > MSEL,/N. Note that the

] . asymptotic bound is equal to the finite-sample bound for a
where CRR®) is the block of CRR») corresponding to  gjngle snapshot.

those parameters that describeOf course, the entries of
CRB(0) are generally dependent on the nuisance parame-
ters. Note that [8] gives a procedure to calculate GRB

that avoids inversion of the full FIM and instead only re-

quires inversion of a matrix equal to the dimensiondof  \1ost common parameterizations of a 3D vector, including

2.1.1. Orthogonal Curvilinear Parameterizations

The mean-square error matrix thus satisfies spherical coordinates, circular and elliptic cylinder coor-
T dinates, parabolic coordinates, and prolate spheroidal co-

ov ov i ” -

EAvAv” > Z2CRBO)ZY + ee”. 2.3) ordinates, are examples of orthogoqal gurwlmear cpordl
00 00 nate systems. Such a parameterization is characterized by



the fact that its Jacobiaflv /96 has orthogonal columns. if €, = o(1/+v/N) andde.. /90 = o(1), wheree, is the bias

Therefore, if we denote thg kth entry of CRB@) by Cjy, of @ considered as an estimatewf Condition (2.5) is suf-
equation (2.8) simplifies to ficient, but again not necessary, for this to hold. Therefore,
3 defining the asymptotic normalized MSAE and its bounds
MSEL, = N Z hiij (2.9) in the obvious way, we have that
j=1

MSAE., £ lim NE~? > MSAE,
whereh; = |0v/06,| is called the scale factor for thigh N—roo
coordinate [9]. For example, in spherical coordinates (2.9) A Nt { 8(géT)CRB(0)8(%T0/T) } (2.15)

MSEL; = N{CRB(r) + r% cos® yCRB(¢) + r?CRB(%)}, This bounds applies to, at least, all estimators satisfying
(2.10) (2.5) and having a fourth order moméntAv|* = o(1/N).

The finite-snapshot version of (2.15) requires théd /7)

be an unbiased estimator of r, in which case the MSAE

is bounded by MSAE/N for all N. This is not implied

by the unbiasedness of so, in general the bounds on the

MSEL and on the MSAE do not simultaneously hold for a

finite number of snapshots.

becomes

wherer, ¢, andy are the length, azimuth, and elevation,
respectively.

2.2. Mean-Square Angular Error

In some applications, e.g. radar or sonar target localization, . herical di | b
separate characterizations of the error in the bearing and thé?Sing spherical coordinates, for example, (2.15) becomes

range can be very informative. In this section we consider MSAE, = N{cos?)CRB(¢) + CRB(s))}. (2.16)

the mean-square angular error (MSAE), introduced in [1]

for a unit vector in spherical coordinates and used as an ar-This is the expression obtained in [1] for a unit length es-

ray design criterion in [10]. The MSAE is defined B3/?, timate of a unit length vector. However, note that although

wherey € [0, 7] is the angle betweei andv. r does not appear in (2.16) it is not necessarily independent
of the length ofv, since CRB¢) and CREz) may depend

Consider the normalized vectai2 v/r andthe normalized ~ Onit.

estimateq 2 0 /7, wherer andr are the lengths o andv,

) If the length ofv is known, e.g. the distance to the target
respectively. Now

is known or the source is far-field so thais taken to be a

— 9gin 1 |Av| 2.11) unit vector, then it is natural to constrairto have the same
7= 2’ ' length. In that casedu = Aw/r and it follows that, under
whereAu = @ — u. Using a standard expansion fan ! (2.5),
the squared angular error is MSAE,, = MSEL,, /72, (2.17)

7 = [Auf/r® + 0(|Aul®). (212) E|Av|* = o(1/N), with a similar expression for the
All terms in the expansion are positive so truncating the se-bound MSAE, in terms of MSEL.
ries at any point gives a lower bound 6. In particular
|Awu|? is alower bound fofy2. Geometrically speaking\u
is the chord of the unit circle joining the tips afandu, and 2.3. Mean-Square Range Error
r?~? is the arc length. Therefore, assuming thdi\u|*,
and all higher order moments phu|, areo(1/N), The MSRE is defined as

MSAE = E |Au|? + o(1/N). (2.13) MSREZ E Ar2, (2.18)

The moment condition is clearly satisfied whemAv|* is whereAr = #—r. By considering as an estimate efwith

o(1/N), however, this is not necessary; consider, for ex- piase,, we can follow a similar development to Section 2.1
ample, an estimator whose error is asymptotically due to g find that

inaccuracies in range rather than bearing. Following similar 5 5
reasoning to Section 2.1, MSRE > &%CRB(Q)a_; +o(1/N), (2.19)
T
E|Aul? > tr {g—ZCRB(e)g—Z } +0(1/N), (2.14)  assuming that, iso(1/v/N) andde, /0@ iso(1). It can be
shown that these are satisfied if (2.5) holds and, in addition,
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