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ABSTRACT

We proposenewtime-frequency (TF) symbols as the narrowband
Weyl symbol (WS) smoothed by an appropriate kernel. These
new symbols preserve time and frequency shifts on a random pro-
cess. Choosing specific smoothing kernels, we can obtain vari-
ousnewsymbols (e.g. Levin symbol and Page symbol). We link
a quadratic form of the signal to the new symbols and Cohen’s
class of quadratic time-frequency representations, and we derive
a simple kernel constraint for unitary symbols. We also propose
an affine class of symbols in terms of the wideband Weyl symbol
(P0WS). These symbols preserve scale changes and time shifts.
Furthermore, we generalize the smoothed versions of the WS and
P0WS to analyze random processes undergoing generalized fre-
quency shifts or generalized time shifts.

1. INTRODUCTION

The narrowband Weyl symbol (WS) has been successfully used
in the time-frequency (TF) analysis of linear time-varying systems
and nonstationary processes [4, 10, 15]. The WS of a linear oper-
atorL is defined as1

WSL(t; f) =
R
KL(t+

�

2
; t�

�

2
) e�j2�f�d� (1)

=
X
n

�nWDun(t; f); (2)

whereKL(t; �) =
P

n �nun(t)u
�
n(�) is the kernel of the oper-

atorL defined on L2(R) [5], �n andun(t) are the eigenvalues
and eigenfunctions, respectively, ofKL(t; �), and WDun is the
Wigner distribution (WD) ofun(t) [6]. Based on (2), we say that
the unitary operator symbol WS isassociated withthe unitary WD
quadratic time-frequency representation (QTFR). The WS can be
interpreted as a time-varying spectrum of arandom process. It is
a useful TF analysis tool as it preserves constant time shifts and
frequency shifts on a random processx(t) [4],

y(t) = x(t� �)) WSRy (t; f) = WSRx(t� �; f); (3)
y(t) = x(t)ej2�t� ) WSRy (t; f) = WSRx(t; f � �); (4)

whereRz is the autocorrelation operator ofz(t). The WS also
preserves scale changes on the random process [12],

y(t)=
p
jajx(at)) WSRy (t; f)=WSRx(at; f=a): (5)

The Weyl correspondence is a unitary mapping between the opera-
torL and its WS [14, 4, 10, 15]. In particular, the WS (and its 2-D
Fourier transform (FT), the spreading function, SFL(�; �)) provide
an important formulation of a quadratic form of the processx(t),R

(Lx)(t)x�(t)dt=
RR

WSL(t; f)WDx(t; f) dt df (6)

=
R R

SFL(�; �)AF�x(�; �)d� d�;
�This work was supported in part by ONR grant N00014-96-1-0350.

1Unless otherwise specified, integrals and sums range from�1 to1:

where AFx(�; �) is the ambiguity function (AF) ofx(t) [6]. This
important relationship in (6) is useful for a TF concentration mea-
sure definition [15] and for TF detection applications [11].

The wideband Weyl symbol (P0WS) in [16, 7, 8] is defined as

P0WSB(t; f)=f
R
�B(f�(�)e

�
2; f�(�)e�

�
2 )�(�)ej2�ft�d�; (7)

=
X
n

�nP0Qn
(t; f); f > 0 (8)

where�B(f;�)=
P

n�nQn(f)Q
�
n(�) is the kernel of the operator

B onL2(R
+), �n andQn(f) are the eigenvalues and eigenfunc-

tions, respectively, of�B(f;�), P0Qn is the unitary Bertrand P0-

distribution ofQn(f) [1], and�(�)= �=2

sinh�=2
. In (8), the unitary

P0WS isassociated withthe unitary Bertrand P0-distribution. The
P0WS is an important operator symbol that satisfies the time-shift
covariance in (3) and scale covariance in (5). It also satisfies hy-
perbolic time-shift covariance [8]. A quadratic form of the process
x(t) (with FTX(f)) can be expressed in the frequency domain in
terms of the P0WS and the unitary Bertrand P0-distributionR 1

0
(BX)(f)X�(f)df=

RR 1
0

P0WSB(t; f)P0X (t; f)dtdf: (9)
In [14], it was noted that if one chooses a different QTFR than

the WD in (6), then one can have an alternative mapping between
a linear operator and the symbol corresponding to the QTFR. In
this paper, we propose a class of operator symbols to (i) satisfy
the desirable TF shift covariance properties (3) and (4), and (ii)
provide alternative formulations of the quadratic form in (6) using
corresponding QTFRs in Cohen’s class [2, 6]. We express thisnew
class2 of TF symbols in terms of a kernel function2 that is related
to the kernel of a Cohen’s class QTFR. If the associated Cohen’s
class QTFR is unitary, then the symbol kernel satisfies a simple
constraint for unitarity. We show that the conventional WS in (1)
is a member of this class, and that all other members can be writ-
ten as smoothed versions of the WS. Other members include the
Kohn-Nirenberg symbol [4], the�-generalized WS [10], as well as
thenewLevin symbol, thenewPage symbol, and thenewpseudo
WS proposed in this paper.

We also propose new operator symbols based on an affine class
kernel formulation; they satisfy the time-shift covariance property
in (3) and the scale covariance property in (5). This affine class
of symbols can be written both in terms of the WS in (1) and the
P0WS in (7). We derive the symbol kernel constraint necessary for
thesenewaffine symbols to provide alternative formulations of the
quadratic form in (9). Specific members of this class of symbols
include the conventional WS in (1), the P0WS in (7), and new

2In this paper, by the term “QTFR class” (“TF symbol class”), we mean
the group of all QTFRs (TF symbols) that satisfy a given set of properties.
Also, by the term “kernel”, we mean the function that uniquely character-
izes a specific member of a group. Here, we talk about three different types
of kernels: (a) kernel of an operator (cf.KL in (1)), (b) kernel of a symbol

(cf. �(C)

TS in (10)), and (c) kernel of a QTFR (cf.	(C)

T in (13)).



Symbol Name Unitary Time-Frequency Symbols Smoothing Kernel,�(C)

TS (�; �) Reference

Narrowband WS WSL(t; f) =
R
KL(t+

�
2
; t� �

2
) e�j2�f�d� 1 [4, 10, 15]

Kohn-Nirenberg symbol KSL(t; f)=
R
KL(t; t� �)e�j2��fd� exp(�j���) [4]

Levin symbol LSL(t; f)=
R 0

�1
KL(t; t� � )e�j2�f�d�+

R1
0
KL(t+ �; t)e�j2�f�d� exp(j�j� j�) new

Page symbol PSL(t; f)=
R 0

�1
KL(t+ �; t)e�j2�f�d�+

R1
0
KL(t; t� � )e�j2�f�d� exp(�j�j� j�) new

�-Generalized WS WS(�)
L (t; f) =

R
KL

�
t+ ( 1

2
� �)�; t� ( 1

2
+ �)�

�
e�j2�f�d� exp(�j2����) [10, 12]

Table 1:Various unitary smoothed versions of the narrowband WS in (11).KL(t; �) is the kernel of the operatorL defined on L2(R).

symbols corresponding to the unitary Bertrand P�-distributions
[1]. Finally, we extend the symbol class formulation concept to
newhyperbolic symbols preserving scale changes and hyperbolic
frequency shifts, tonewpower symbols preserving scale changes
and power time shifts, to new exponential symbols preserving fre-
quency shifts and exponential time shifts, and tonewgeneralized
warped symbols preserving generalized time shifts or generalized
frequency shifts.

2. CLASS OF TF SHIFT COVARIANT SYMBOLS

We propose anewclass of operator symbols which preserve time
and frequency shifts (like the WS in (3) and (4)), an important
property for the TF analysis of random processes. We define these
symbols as smoothed versions of the conventional WS in (1) [9]

TS(C)
L (t; f) =

RR
�
(C)

TS (t� t̂; f � f̂)WSL(t̂; f̂) dt̂ df̂ (10)

=
RR

�
(C)

TS (�; �)SFL(�; �)e
�j2�(�f�t�) d� d�; (11)

where3 �(C)

TS (t;f)=2-D FTf�(C)

TS (�;�)g is a 2-D kernel function

that uniquely characterizes the operator symbol, TS(C)
L (t;f). The

newsymbol class provides a new quadratic form to (6):R
(Lx)(t)x�(t) dt =

R R
TS(C)
L (t; f)T(C)

x (t; f) dt df: (12)

The QTFR T(C)
x that corresponds to the “T-symbol” TS(C)

L in (12)
is a member of Cohen’s class of TF shift covariant QTFRs [2, 6]
T(C)
x (t; f)=

RR
	

(C)

T (�; �)AFx(�; �)e
�j2�(�f�t�) d� d�; (13)

where	(C)

T (�; �) is a 2-D kernel that uniquely characterizes the

QTFR, T(C)
x (t; f). For (12) to hold, the QTFR T(C) in (13) has a

kernel	(C)

T that is related to the symbol kernel�(C)

TS in (11) as

�
(C)

TS (�; �)=1=	
(C)�

T (�; �)=	
(C)

T (�; �)=j	
(C)

T (�; �)j2: (14)

For example, the WS in (1) is a member of the symbol class in
(10)-(11) when the symbol kernel�(C)

WS(�; �) = 1. The Cohen’s
class QTFR T(C) in the quadratic form (12) must be the QTFR
with kernel	(C)

T (�; �)=1=�
(C)�

WS (�; �)=1, which corresponds to
the WD (cf. quadratic form in (6)). Note that the quadratic form
in (12) can also be written asR

(Lx)(t)x�(t)dt=
RR

TSF(C)
L (�; �)TAF�x(�; �)d� d�

where TSF(C)
L (�; �)=�

(C)

TS (�; �)SFL(�; �)=2-D FTfTS(C)
L (t; f)g

and TAFx(�; �)=	
(C)

T (�; �)AFx(�; �)=2-D FTfT(C)
x (t; f)g.

2.1. Unitary TF Shift Covariant Symbols

The formulation in (10) provides anewmapping between a linear
operatorL and itsnew symbol, TS(C)

L (t; f). We can show that
this mapping is unitary if the symbol is unitary, i.e. if the symbol
satisfies the relation [9]RR

TS(C)
L (t;f)TS(C)�

M (t;f)dtdf=
X
n

X
m

�n

�
mj
R
un(t)e

�
m(t)dtj

2(15)

3We use the superscript (C) to link the symbol in (10) to the TF shift
covariance of Cohen’s QTFR class formulation.

where�n andun(t) (
m andem(t)) are the eigenvalues and eigen-
functions, respectively, of the kernel of the operatorL (M). We
can further show [9] that (15) is satisfied if and only if the symbol
kernel in (11) satisfies the constraintj�(C)

TS (�;�)j=1. The asso-
ciated Cohen’s class QTFR T(C) in (12) is also unitary [6] and
its kernel satisfiesj	(C)

T (�;�)j=1. Thus, we say that this unitary
symbol isassociated withthe unitary QTFR. Let us denote the
unitary symbol as UTS(C)

L (t;f) and its associated unitary QTFR

in (12) as UT(C)
x (t;f). Using the relation in (14) and the unitarity

QTFR constraintj	(C)

UT (�; �)j=1, we can show that the unitary
symbol kernel equals the unitary Cohen’s class QTFR kernel, i.e.
�

(C)

UTS(�;�)=	
(C)

UT (�;�): This leads to the useful relation

UTS(C)
L (t; f)=

X
n

�nUT(C)
un (t; f) (16)

between the unitary symbol satisfying (15) and itsassociatedQTFR
(cf. (2)) where�n andun(t) are the eigenvalues and eigenfunc-
tions of the kernel ofL in (1)-(2).

2.2. Examples of Unitary TF Shift Covariant Symbols

Some examples of unitary symbols in (10)-(11) satisfying the con-
straintj�(C)

TS (�; �)j=1 are summarized in Table 1 and below:
� Narrowband Weyl symbol: WSL(t; f) is defined in (1) with
kernel�(C)

WS(�; �) = 1 or �(C)

WS(t; f)=�(t)�(f):

� Kohn-Nirenberg symbol: The Kohn-Nirenberg symbol of an
operator associated with the Rihaczek distribution is defined as [4]

KSL(t; f)=
R
KL(t; t� �)e�j2��fd� (17)

when�(C)

KS (�; �)= e�j��� . The Kohn-Nirenberg symbol is also
known as the Zadeh’s transfer function [10].
� Levin symbol: We define thenewsymbol associated with the
Levin distribution as

LSL(t; f) =
R 0

�1
KL(t; t� � )e�j2�f�d�

+
R1

0
KL(t+ �; t)e�j2�f�d�:

The smoothing kernel for the Levin symbol is�(C)

LS (�; �)=ej�j� j�.
� Page symbol:We define thenewsymbol, PSL(t; f), associated
with the Page distribution as

PSL(t; f) =
R 0

�1
KL(t+ �; t)e�j2�f�d�

+
R1

0
KL(t; t� �)e�j2�f�d�

with smoothing kernel�(C)

PS (�; �)=e�j�j� j�.
� � -Generalized WS: The symbol associated with the� -gener-
alized WD [6] is defined in [10, 12] as

WS(�)
L (t;f)=

R
KL

�
t+ (

1

2
��)�; t� (

1

2
+�)�

�
e�j2�f�d�: (18)

Its smoothing kernel is�(C)

WS(�)
(�; �)=e�j2����: Note that when

�= 0, WS(�)L (t; f) reduces to the conventional WS in (1), and
when�=1=2, it simplifies to the Kohn-Nirenberg symbol in (17).



2.3. Example of Non-Unitary TF Shift Covariant Symbol

Whenj�(C)

TS (�; �)j 6= 1, the symbol TS(C)
L in (10)-(11) is not uni-

tary. As a consequence, the symbol does not satisfy the unitary
relation in (15) and cannot be written as in (16). However, the
symbol still satisfies the covariance properties in (3)-(4) and pro-
vides an alternative quadratic form of a random process in (12).
An example of a non-unitary symbol follows:
� Pseudo WS: We define thenewpseudo WS that corresponds in
(12) to the pseudo WD with non-zero window�(t) as

PWSL(t; f) =
R 1

��( �
2
)�(� �

2
)
KL(t+

�

2
; t�

�

2
)e�j2��fd�:

Since the kernel of the pseudo WD is	(C)

PWD(�; �) = �( �
2
)��(� �

2
)

in (13), then, using (14), the corresponding symbol kernel of the
PWS in (11) is�(C)

PWS(�; �) = 1=(��( �
2
)�(� �

2
)).

3. CLASS OF AFFINE TF SYMBOLS

The class of symbols in (10) does not necessarily preserve scale
changes on a random process as in (5). Thus, we propose anew
class of TF symbols covariant to time shifts in (3) and scale changes
in (5) of a random process. We denote these new symbols with the
superscript (A) for affine. We define them as affine smoothed ver-
sions of the WS in (1) or of the P0WS in (7),

TS(A)
B (t; f)=

RR1
0
�
(A)

TS (f(t� t̂);�
f̂

f
)WS

bB(t̂; f̂)dt̂ df̂ ; f>0(19)

=
RR 1

0
b�(A)

TS (f(t� t̂);�
f̂

f
)P0WSB(t̂; f̂)dt̂ df̂ ; (20)

whereb�(A)

TS (c; b)=�b
RR

�
(A)

TS (ĉ;
a
2
ea+1
ea�1

b)�(a)ej2�ab(ĉ�c) dadĉ is

a 2-D kernel characterizing the symbol TS(A), bB=F�1BF , the FT
operatorF is (Fx)(f)=X(f) and(F�1Fx)(t)=x(t).

We can show that if the affine symbol in (19) is unitary, i.e.
satisfies (15), then its corresponding kernel satisfies the constraintRRR

�
(A)�

TS (c; b�)�
(A)

TS (ĉ; �)e
j2���(c�ĉ)dcdĉd�=�(b�1); 8�. The

unitary affine symbols denoted UTS(A)
B (t;f) provide a new formu-

lation of the quadratic form in (9),R1
0
(BX)(f)X�(f)df=

RR1
0

UTS(A)
B (t;f)UT(A)�

X (t;f) dtdf:

Here, UT(A)
X (t;f) is the symbol’s associated unitary affine QTFR

[3], UT(A)
X (t; f)=

RR 1
0
 
(A)

UT (f(t�t̂);� f̂
f
)WDX(t̂; f̂)dt̂ df̂ , with

QTFR kernel (A)

UT (c; b) = �
(A)

UTS(c; b) in (19).

3.1. Examples of Unitary Affine Symbols

�Narrowband Weyl symbol: When the symbol kernel�(A)

WS(c;b)=
�(c)�(b+ 1) in (19), the conventional WS in (1) is obtained.
� P0-Weyl symbol: TS(A)

B in (20) simplifies to the P0WS in (7)
when the kernelb�(A)

P0WS(c; b) = �(c)�(b+ 1).
� �-Generalized Weyl symbol: The�-generalized WS in (18) is
obtained from (19) when�WS(�)(c; b)=e

�j2�c(b+1)=�=�.
� Bertrand P�-symbols: We propose thenewsymbols associated
with the unitary Bertrand P�-distributions [1] and define them as
P�SB(t; f) =

R
�B(f��(�); f��(��))

�ej2�tf [��(�)���(��)]�(�) d�; � 6= 0; 1

where��(�) = [�(e�� � 1)=(e��� � 1)]1=(��1) and�(�) =

(��(�)��(��))
1=2( d

d�
(��(�)� ��(��)))

1=2
.

4. OTHER CLASSES OF TF SYMBOLS

4.1. Hyperbolic Smoothed Symbols

We define the class of hyperbolic (note the superscript (H)) smoothed
symbols fort > 0 as

HTS(H)
Y (t; f)=

R1
0

R
�
(H)

HTS(ln(
t

t̂
);ft � f̂ t̂ )HWSY(t̂;f̂)dt̂df̂ (21)

where the operatorY is defined onL2(R
+) and �(H)

HTS(c; b) =

�
(C)

TS (trc; b=tr) in (19) with a fixed time referencetr > 0. Here,
the hyperbolic Weyl symbol HWSY(t; f) is defined as [7]

HWSY(t; f)= t
R
KY(te

�=2; te��=2) e�j2�tf�d�; t > 0: (22)

This class of symbols preserves hyperbolic frequency shifts and
scale changes on a random processx(t), i.e.

y(t)=x(t)e
j2�c ln t

tr )HTS(H)
Ry

(t; f)=HTS(H)
Rx

(t; f �
c

t
);

y(t)=
p
jajx(at)) HTS(H)

Ry
(t; f)=HTS(H)

Rx
(at; f=a):

We can show that the symbols in (21) are unitary if and only if
j�

(H)

HTS(�; �)j = 1 where�(H)

HTS(�; �) = 2-D FTf�(H)

HTS(c; b)g. A
quadratic form can be expressed in terms of these unitary hyper-
bolic symbols and the associated unitary QTFRs of the hyperbolic
class [13]. We can obtain special examples of HTS(H)

Y (t; f) by
choosing the corresponding symbol kernel as follows.
� Hyperbolic WS: The HTS(H)

Y (t; f) in (21) simplifies to the hy-

perbolic WS in (22) [7] when�(H)

HWS(�; �)=1:

� Hyperbolic Kohn-Nirenberg symbol: When�
(H)

HKS(�; �) =

e�j��� , then the HTS(H)
Y (t; f) reduces to the new hyperbolic Kohn-

Nirenberg symbol,
HKSY(t; f)=

R
te��=2KY(t; te

��)e�j2��tfd�: (23)

� Hyperbolic Levin symbol: When�(H)

HLS(�; �)= e
j�j�j� , we

obtain the new hyperbolic Levin symbol as
HLSY(t; f)=

R 0

�1
te��=2KY(t; te

��)e�j2��tfd�

+
R1

0
te�=2KY(te

� ; t)e�j2��tfd�:

� Hyperbolic Page symbol: When�(H)

HPS(�; �) = e�j�j�j�, we
define the new hyperbolic Page symbol as

HPSY(t; f)=
R 0

�1
te�=2KY(te

� ; t)e�j2��tfd�

+
R1

0
te��=2KY(t; te

��)e�j2��tfd�:

� Hyperbolic �-generalized WS: We obtain the new hyperbolic
�-generalized WS, HWS(�)Y (t; f), as

HWS(�)
Y (t; f)=

R
te��KY(te

(�� 1
2
)� ; te(�+

1
2
)�)e�j2��tfd�

when�(H)

HWS(�)
(�; �)=e�j2���� . Note that this symbol reduces to

the HWS in (22) when�=0, and to the HKS in (23) when�=1=2.

4.2. Power smoothed symbols

We define the new power class of TF symbols forf > 0 as

PTS(�)Q (t; f)=
RR1

0
b�(A)

PTS

�
f�

�
(

t

f��1
�

t̂

f̂��1
);�( f̂

f
)
�
�

�PP0WS(�)
Q (t̂; f̂ )dt̂df̂ ; (24)

where PP0WS(�)
Q (t; f) is the�th power P0WS [7] with symbol

kernelb�(A)

PP0WS(c; b)=�(c)�(b+1), Q is defined onL2(R
+), and

the power symbol kernelb�(A)

PTS(c;b)=
b�(A)

TS (c;b) in (20). Note that

when�=1, the PTS(�)Q reduce to the affine smoothed symbols in
(20).

The class in (24) preserves power time shifts and scale changes
on a random processX(f), i.e.

y(t)=(F�1[X(f)e
�j2��( f

fr
)�
])(t))

PTS(�)
Ry

(t; f)=PTS(�)
Rx

�
t�

��

fr
(
f

fr
)��1; f

�
;



y(t)=
p
jajx(at)) PTS(�)

Ry
(t; f) = PTS(�)

Rx
(at; f=a)

wherefr > 0 is a fixed reference frequency.

4.3. Exponential smoothed symbols

We define the new class of exponential smoothed symbols as

ETS(E)
Q (t; f)=

RR b�(A)

ETS

�
fre

f=fr(
t

ef=fr
�

t̂

ef̂=fr
);�e(f̂�f)=fr

�
�EP0WSQ(t̂; f̂)dt̂df̂ (25)

whereQ is defined onL2(R), the exponential symbol kernel isb�(A)

ETS(c; b)=
b�(A)

TS (c; b) in (20) and EP0WSQ(t; f) is the exponen-

tial P0WS [7] with kernelb�(A)

EP0WS(c; b)=�(c)�(b+ 1). The class

of exponential symbols, ETS(E)
Q (t; f), preserves exponential time

shifts and constant frequency shifts on a random process,

y(t)=(F�1[X(f)e�j2��e
f=fr

])(t))

ETS(E)
Ry

(t; f)=ETS(E)
Rx

(t�
�

fr
ef=fr ; f);

y(t) = x(t)ej2��t ) ETS(E)
Ry

(t; f) = ETS(E)
Rx

(t; f � �):

4.4. Generalized frequency-shift covariant symbols

We propose anewclass of TF symbols, GTS(GC)
Y (t;f); that pre-

serve generalized frequency shifts on a random process. The shift
depends on a one-to-one warping function�(b)

y(t)=x(t)e
j2�c�( t

tr
)
)GTS(GC)

Ry
(t;f)=GTS(GC)

Rx
(t;f�

c

tr
�0(

t

tr
))

where�0(b) = d
db
�(b). The new symbols are defined as

GTS(GC)
Y (t; f)=

RR q
p
�
(GC)

GTS

�
�(
t

tr
)� �(

t̂

tr
);

trf

�0( t
tr
)
�

tr f̂

�0( t̂
tr
)

�

�GWSY(t̂; f̂)dt̂df̂ (26)

= TS(C)

W�YW
�1
�

(tr�(
t

tr
); f=�0(

t

tr
));

whereY is defined onL2([p; q]), [p; q] is determined by the do-
main of the warping function�(b), �(GC)

GTS (c;b)= �
(C)

TS (trc;
b
tr
) in

(10), the warping is(W�x)(t)=x(tr�
�1( t

tr
))=j�0(��1( t

tr
))j1=2,

and(W�W
�1
� x)(t)=x(t). The generalized Weyl symbol GWSY

is defined as [7] GWSY(t; f)=WS
W�YW

�1
�

(tr�(
t
tr
); f=�0( t

tr
)):

Depending on the smoothing kernel�
(GC)

GTS (c;b) in (26), GTS(GC)
Y

results in the new generalized Levin symbol, the generalized Page
symbol or the generalized Kohn-Nirenberg symbol [9]. Also, we
can derive special cases of GTS(GC)

Y by choosing a specific warp-
ing function�(b) in (26). For example, we obtain the hyperbolic
smoothed symbols in Section 4.1 when�(b) = ln b.

4.5. Generalized time-shift covariant symbols
We define a class of generalized time-shift covariant symbols as

GTS(GA)
Q (t; f)=

RR d
c
b�(A)

GTS

�
�(
f

fr
)( frt

�0( f
fr
)
�

fr t̂

�0( f̂
fr
)
);�

�( f̂
fr
)

�( f
fr
)

�

�GP0WSQ(t̂; f̂)dt̂ f̂ (27)

whereQ is defined onL2([c; d]), [c; d] is determined by the do-
main of the warping function�(b), the generalized symbol kernelb�(A)

GTS(c; b) =
b�(A)

TS (c; b) in (20) and GP0WSQ(t; f) is the gener-

alized P0WS [8]. The GTS(GA)
Q preserves generalized time shifts

on a random processX(f),

y(t)=(F�1[e
�j2���( f

fr
)
X(f)])(t))

GTS(GA)
Ry

(t; f)=GTS(GA)
Rx

(t�
�

fr
�0(

f

fr
); f):

Depending on the warping function�(b), the GTS(GA) in (27)
can be simplified to a specific class of affine symbols. For exam-
ple, we obtain the TS(A) in (20) when�(b) = b, the PTS(�) in (24)
when�(b) = b� and the ETS(E) in (25) when�(b) = eb.

5. CONCLUSION
In this paper, we proposednewclasses of smoothed versions of the
narrowband Weyl symbol and the wideband Weyl symbol. These
new symbols preserve important changes on a random process.
For example, a smoothed version of the narrowband WS preserves
constant TF shifts on a random process and belongs to thenew
class of TF shift covariant symbols. Thenewsymbols formulate
the quadratic form of a random process with corresponding QT-
FRs. We showed that a symbol kernel is identical to its associated
QTFR kernel if the QTFR is unitary. We also proposed generalized
formulations of smoothed symbols. We provided special examples
of generalized smoothed symbols (e.g. hyperbolic smoothed sym-
bols, power smoothed symbols, and exponential smoothed sym-
bols). For example, we derived the hyperbolic Weyl symbol, hy-
perbolic Kohn-Nirenberg symbol, hyperbolic Levin symbol and
hyperbolic Page symbol as hyperbolic smoothed symbols.
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