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ABSTRACT where AR, (7, v) is the ambiguity function (AF) of(¢) [6]. This

) important relationship in (6) is useful for a TF concentration mea-
We proposenewtime-frequency (TF) symbols as the narrowband  syre definition [15] and for TF detection applications [11].
Weyl syn;b(l)l (WS) smoothed db]}/ an appro;;]r_:(ate kernel.d These  The wideband Weyl symbol ¢8VS) in [16, 7, 8] is defined as
new symbols preserve time and frequency shifts on a random pro- a _a o fto
cess. Choosing specific smoothing kernels, we can obtain vari- POWSs (t, £)=f[Ta(FA(@)e?, fA(a)e” #)A (@)’ da, (7)
ousnewsymbols (e.g. Levin symbol and Page symbol). We link = Zﬁ" Poo, (t,f), f>0 (8)
a quadratic form of the signal to the new symbols and Cohen’s n
class of quadratic time-frequency representations, and we derivewherel's(f,v)=>", 6. Qn(f)Qn(v) is the kernel of the operator
a simple kernel constraint for unitary symbols. We also propose B on L»(R"), 8, andQ..(f) are the eigenvalues and eigenfunc-
an affine class of symbols in terms of the wideband Weyl symbol tions, respectively, of's(f,v), Po,,,, is the unitary Bertrand {2
(PoWS). These symbols preserve scale changes and time shiftSgistribution ofQ., (f) [1], and A(a)==2L2_. In (8), the unitary
Furthermore, we generalize the smoothed versions of the WS an sinh /2

P WS | d d ) lized WS isassociated witlthe unitary Bertrand fRdistribution. The
0 to analyze random processes undergoing generaiized rep yyg jg an important operator symbol that satisfies the time-shift
guency shifts or generalized time shifts.

covariance in (3) and scale covariance in (5). It also satisfies hy-
perbolic time-shift covariance [8]. A quadratic form of the process
1. INTRODUCTION z(t) (with FT X (f)) can be expressed in the frequency domain in
The narrowband Weyl symbol (WS) has been successfully usedterms of the PWS and the unitary BertrandRlistribution
in the time-frequency (TF) analysis of linear time-varying systems [ 5 (BX)(f)X"(f)df=/[f . PoWSs(t, f) Pox (t, f)dtdf. (9)
and nonstationary processes [4, 10, 15]. The WS of a linear oper-  In [14], it was noted that if one chooses a different QTFR than
ator £ is defined as the WD in (6), then one can have an alternative mapping between
WS (t, f) = f]gﬁ(t + IJ — I) e I2mIT g (1) a linear operator and the symbol corresponding to the QTFR. In
2 2 this paper, we propose a class of operator symbols to (i) satisfy
=> WDy, (t, f), 2 the desirable TF shift covariance properties (3) and (4), and (ii)
n provide alternative formulations of the quadratic form in (6) using
where K (t, 7) = 3, pnun(t)u,(7) is the kernel of the oper-  corresponding QTFRs in Cohen’s class [2, 6]. We expressitivis
ator £ defined on k(R) [5], pn andun(t) are the eigenvalues  clasg of TF symbols in terms of a kernel functidthat is related

and eigenfunctions, respectively, af. (¢, 7), and WD,, is the to the kernel of a Cohen’s class QTFR. If the associated Cohen’s
Wigner distribution (WD) ofu., (¢) [6]. Based on (2), we say that  class QTFR is unitary, then the symbol kernel satisfies a simple
the unitary operator symbol WSassociated witlhe unitary WD constraint for unitarity. We show that the conventional WS in (1)
quadratic time-frequency representation (QTFR). The WS can bejs a member of this class, and that all other members can be writ-
interpreted as a time-varying spectrum aladom processlt is ten as smoothed versions of the WS. Other members include the
a useful TF analysis tool as it preserves constant time shifts andKohn-Nirenberg symbol [4], the-generalized WS [10], as well as
frequency shifts on a random process) [4], the newLevin symbol, thenewPage symbol, and theewpseudo

y(t) =a(t —7) = WSg, (t,f) =WSr,(t =7, f), (3) WS proposed in this paper.

y(t) = z(t)e’>™ = WS, (t, f) = WSr, (t, f — v), (4) We also propose new operator symbols based on an affine class

kernel formulation; they satisfy the time-shift covariance property
in (3) and the scale covariance property in (5). This affine class
preserves scale changes on the random process [12], of symbols can be written both in terms of the WS in (1) and the
y(t)=Vlalz(at) = WS, (t, f)=WSr, (at, f/a). ®) PoWS in (7). We derive the symbol kernel constraint necessary for
The Weyl correspondence is a unitary mapping between the operathesenewaffine symbols to provide alternative formulations of the
tor £ and its WS [14, 4, 10, 15]. In particular, the WS (and its 2-D quadratic form in (9). Specific members of this class of symbols
Fourier transform (FT), the spreading function,.$F, v)) provide include the conventional WS in (1), the)\®'S in (7), and new
an important formulation of a quadratic form of the proceés,

whereR.; is the autocorrelation operator eft). The WS also

. 2|n this paper, by the term “QTFR class” (“TF symbol class”), we mean
J(Lx)(t)a"(t)ydt= [ [WSc(t, f) WD.(t, f) dt df (6) the group of all QTFRs (TF symbols) that satisfy a given set of properties.
_ ffSF (1,v) AF: (7, v) dr dv Also, by the term “kernel”, we mean the function that uniquely character-
- LT =\ ’ izes a specific member of a group. Here, we talk about three different types

*This work was supported in part by ONR grant N0O0014-96-1-0350. Of kernels: (a) kernel of an operator (¢t in (1)), (b) kernel of a symbol
1Unless otherwise specified, integrals and sums range fremto co. (cf. 0%) in (10)), and (c) kernel of a QTFR (cﬂl.(ro) in (13)).




Symbol Name |

Unitary Time-Frequency Symbols

Smoothing Kernele(o)(nu) | Reference‘

Narrowband WS | WS (t, f) = [Ke(t+ 3.t — Z)e > mdr 1 [4,10, 15]
Kohn-Nirenberg symbol KS (¢, ZI‘I\L t,t —1)e I dr exp(—jnTv) [4]
Levin symbol LSc(t, f)= fﬁ Ke(t,t — T)e_j2”f7d7'+f;of{g(t + 7, t)e” I gy exp(jn|7|v) new
Page symbol PS:(t, f)= fo Ke(t+ 7, t)e_ﬂ"f"dT—i—f;oKL (t,t —7)e 927 qr exp(—jn|7|v) new
a-Generalized WS WS(a t,f) = f[\g <t + ( —a)r,t— (% + D/)T) e I dr exp(—j2rartv) [10, 12]

Table 1:Various unitary smoothed versions of the narrowband WS in @L)t, ) is the kernel of the operatof defined on k(R).

symbols corresponding to the unitary Bertrang-distributions
[1]. Finally, we extend the symbol class formulation concept to

wherep, andu, (t) (vm ande., (¢)) are the eigenvalues and eigen-
functions, respectively, of the kernel of the operafofM). We

newhyperbolic symbols preserving scale changes and hyperboliccan further show [9] that (15) is satisfied if and only if the symbol

frequency shifts, tmewpower symbols preserving scale changes

kernel in (11) satisfies the constra|||® (T v)|=1. The asso-

and power time shifts, to new exponential symbols preserving fre- .iatad Cohen's class QTFR in (12) is also unitary [6] and

guency shifts and exponential time shifts, anchéwvgeneralized

warped symbols preserving generalized time shifts or generalized

frequency shifts.
2. CLASS OF TF SHIFT COVARIANT SYMBOLS

We propose aewclass of operator symbols which preserve time
and frequency shifts (like the WS in (3) and (4)), an important

property for the TF analysis of random processes. We define these

symbols as smoothed versions of the conventional WS in (1) [9]
TS (t, f) ffe(c) t—t,f— HWSe(L, f)didf (10)
=[[0'2 (r,v)SFe(r,v)e "I 4r 4, (11)

wheré 9%)(15,}”):20 FT{@%?(T,V)} is a 2-D kernel function
that uniquely characterizes the operator symbolff’f’(&f). The
newsymbol class provides a new quadratic form to (6):
[yt () dt = [ [TS(8, HT (@, f)dedf.  (12)
The QTFR 1 that corresponds to the “T-symbol” f’é‘) in (12)
is a member of Cohen’s class of TF shift covariant QTFRs [2, 6]
T, )= [ (7, 0)AF. (r,0)e 7" =) dr dy,  (13)

wherew{”)(r,v) is a 2-D kernel that uniquely characterizes the

QTFR, TX(¢, f). For (12) to hold, the QTFRf" in (13) has a
kernel W~ that is related to the symbol kern@f in (11) as
O1S (7, 1)=1/ W (7,0)={" (m, 1) /|7 (r, ). (14)

For example, the WS in (1) is a member of the symbol class in
(20)-(11) when the symbol kerné)\(,\,cs)(T, v) = 1. The Cohen’s
class QTFR 1¢) in the quadratic form (12) must be the QTFR
with kerneI\If(TC>(T, I/)Zl/@\(NCS)*(T, v)=1, which corresponds to
the WD (cf. quadratic form in (6)). Note that the quadratic form
in (12) can also be written as

[ (L) (t) 2" (t)dt=[ [TSE (7, v)TAF; (7, v) dr dv

where TSE” (7, 1)=0\¢ (, v)SFc (7, v)=2-D FT{TS; (¢, f)}
and TAF. (7, v)=%\") (7, ) AF.. (1, 1)=2-D FT{TV(¢, f)}.

2.1. Unitary TF Shift Covariant Symbols

The formulation in (10) provides mewmapping between a linear
operator£ and itsnew symbol, T%C)(t, f). We can show that
this mapping is unitary if the symbol is unitary, i.e. if the symbol
satisfies the relation [9]

JITSE, TSI (4, f)dtdf=D "> ptnyo | fun (t)e

3We use the superscript (C) to ink the symbol in (10) to the TF shift
covariance of Cohen’s QTFR class formulation.

(t)dt|’(15)

its kernel satlsfle‘@D%C)(T,uﬂ:l. Thus, we say that this unitary
symbol isassociated witithe unitary QTFR. Let us denote the

unitary symbol as UTg)(t, f) and its associated unitary QTFR
in (12) as U'lio) (t,f). Using the relation in (14) and the unitarity
QTFR constralnﬂklf(c>(r v)|=1, we can show that the unitary
symbol kernel equals the unitary Cohen’s class QTFR kernel, i.e.

@UT)S(T,U)—\qur)( v). This leads to the useful relation

uts (e, f) ZMUT(C) (. f)
between the unitary symbol satisfying (15) andssociate @ TFR

(cf. (2)) whereu,, andu,(t) are the eigenvalues and eigenfunc-
tions of the kernel of in (1)-(2).

(16)

2.2. Examples of Unitary TF Shift Covariant Symbols

Some examples of unitary symbols in (10)-(11) satisfying the con-
strain’[|(9(T?(T7 v)|=1 are summarized in Table 1 and below:
e Narrowband Weyl symbol: WS, (¢, f) is defined in (1) with

kernele\(,vcg(r v)y=1 or0<c>(t F)=6()s(f).

e Kohn-Nirenberg symbol: The Kohn-Nirenberg symbol of an

operator associated with the Rihaczek distribution is defined as [4]
KSc(t, f)=[ Ke(t,t —)e ™" dr (17)

when®(Z (r,v)=e /"™, The Kohn-Nirenberg symbol is also
known as the Zadeh'’s transfer function [10].
e Levin symbol: We define thenewsymbol associated with the
Levin distribution as .
LSc(t, f) = [ _Ke(t,t—7)e 2 7dr

+f;°K£ (t+ T, t)efj%deT.
The smoothing kernel for the Levin symboldy ¢ (7, v)=e/ ™71
e Page symbol:We define thenewsymbol, P$ (¢, f), associated
with the Page distribution as

PSe(t,f) = [*_Ke(t+7,6)e™ > 7dr
—i—f:ol(g(t,t — T)e_jzwfrd”r
with smoothing kerne®Sg) (7, v)=e~37I7".

e o -Generalized WS: The symbol associated with the -gener-
alized WD [6] is defined in [10, 12] as

WS(EO‘)(t,f)ZfKL (t + (% —a)T,t — (%—f-a)T) e 974, (18)

Its smoothing kernel I®WS o e~7277 Note that when

a=0, WS(LO‘ (t, f) reduces to the conventional WS in (1), and
whena=1/2, it simplifies to the Kohn-Nirenberg symbol in (17).

V)=



2.3. Example of Non-Unitary TF Shift Covariant Symbol
When|®(T?(T, v)| # 1, the symbol T;éf") in (10)-(11) is not uni-

tary. As a consequence, the symbol does not satisfy the unitary
relation in (15) and cannot be written as in (16). However, the
symbol still satisfies the covariance properties in (3)-(4) and pro-

s t " R
HTS It )=/ 5 [ Ohrs(n(3).1t = FEHWSy (. f)didf (21)
where the operatop is defined onL(R*) and 6{74(c,b) =

Q-E-Oé)(trc, b/t,) in (19) with a fixed time referencg. > 0. Here,
the hyperbolic Weyl symbol HWS(¢, f) is defined as [7]

vides an alternative quadratic form of a random process in (12). HWSy(t, f)zthy(teg/27 te™/?) e 1> 0. (22)

An example of a non-unitary symbol follows:
e Pseudo WS: We define thenewpseudo WS that corresponds in
(12) to the pseudo WD with non-zero windapit) as

_ 1 - T, T\ —j2xrf
PWS:(t, f) _fn*(%)n(_%)m(w St e dr.

Since the kernel of the pseudo WD]‘!é,ﬂ&D(r, v)=n(5)n"(-%)
I

in (13), then, using (14), the corresponding symbol kernel of the

PWS in (11) is95s(T, v) = 1/(n* (3)n(=3)).

2

3. CLASS OF AFFINE TF SYMBOLS

The class of symbols in (10) does not necessarily preserve scale’

changes on a random process as in (5). Thus, we propose a

This class of symbols preserves hyperbolic frequency shifts and
scale changes on a random procegs, i.e.

j2mcln L ¢
y(t)=a(t)e’™! tr:Hngg)(t,f):Hng?(t,f—z),

y(t)=v/lalz(at) = HTS (¢, ))=HTSS (at, f/a).

We can show that the symbols in (21) are unitary if and only if

|I0475(C, B)] = 1 where®{TL(¢, ) = 2-D FT{0\14(c,b)}. A

quadratic form can be expressed in terms of these unitary hyper-
bolic symbols and the associated unitary QTFRs of the hyperbolic
lass [13]. We can obtain special examples of l%ﬁ')sst, f) by
choosing the corresponding symbol kernel as follows.

. X H) . . ™
class of TF symbols covariant to time shifts in (3) and scale changes® Hyperbolic WS: The HTS) gv f)in (21) simplifies to the hy-
in (5) of a random process. We denote these new symbols with theperbolic WS in (22) [7] wher@ﬁv\fs(g, B)=L.
superscript (A) for affine. We define them as affine smoothed ver- ¢ Hyperbolic Kohn-Nirenberg symbol: When oH) ¢,B) =

sions of the WS in (1) or of thed®VS in (7),
185t =[5 058 (fF(t =), —§>ng<5, fydidf, r>0(19)

= [0 (ft — )~ S)PoWSs (L, f)didf,  (20)

wheredld (¢, by=—b[ [058)(e, 2 SELb)A(a)e?>™ =) dad¢ is
a 2-D kernel characterizing the symbol T$B8=F""'BF, the FT
operatorF is (Fz)(f)=X(f) and (F~' Fz)(t)=x(t).

We can show that if the affine symbol in (19) is unitary, i.e.

~ [~

satisfies (15), then its corresponding kernel satisfies the constrain

J[10587 (e, b8)058)(&, B)e?*™ P~ dededf=6(b—1), V(. The
unitary affine symbols denoted Uﬁ(t,f) provide a new formu-
Iatiogn of the quadratic formOLn (9)“ N
Jo BX)(NX" (Ndf=[[ FUTS e, HUTE (¢,) dedf.
Here, Uﬁ?)(t,f) is the symbol’'s associated unitary affine QTFR
81 UTSY (¢, )= [ f 5 %7 (f(t=E), =5 )WDx (7, f)di d f, with
QTFR kerneky([7 (¢, b) = 675(c, b) in (19).
3.1. Examples of Unitary Affine Symbols
o Narrowband Weyl symbol: When the symbol kerné(AS)(c,b):
5(c)é(b+ 1) in (19), the conventional WS in (1) is obtained.
e Pp-Weyl symbol: TSE;D in (20) simplifies to the PWS in (7)
when the kernebs'\ (e, b) = 8(c)5(b + 1).
¢ a-Generalized Weyl symbol: Thea-generalized WS in (18) is
obtained from (19) wheflyg(«) (c, b)=e 727 +D/e /o,
e Bertrand P .-symbols: We propose theaewsymbols associated
with the unitary Bertrand Rdistributions [1] and define them as
PuSi(t, f) = JTs(fAx(@), fAx(—a))

.61'27\'tf[%c (a)*%‘-(*a)]lu(a) da, Kk #0, 1
where),. (o) = [k(e™™ —1)/(e™"* — )] ==Y andu(a) =

. 1/2
(Ae(@)Ae(=a)) > (5 (Ael@) = Au(=))) 7

4, OTHER CLASSES OF TF SYMBOLS

4.1. Hyperbolic Smoothed Symbols

We define the class of hyperbolic (note the superscript (H)) smoothed

symbols fort > 0 as

HKS
¢3¢ thenthe HT§" (¢, f) reduces to the new hyperbolic Kohn-
Nirenberg symbol,
HKSy (t, f)=fte™** Ky (t,te™)e7*" dg. (23)
» Hyperbolic Levin symbol: When©{/(¢, 3) = /™% we
obtain the new hyperbolic Levin symbol as
HLSy (t, f)=[" _te /> Ky (t,te™<)e 727 q¢

+f;oteC/2Ky (tec7 t)eij%ctfdf.
o Hyperbolic Page symbol: When©®{1L(¢, 3) = e 97I¢14, we

Yefine the new hyperbolic Page symbol as

HPSy (t, f)=[" _te“/* Ky (te®, t)e ™27 q¢
+f;ot€7</2[(y (t, tefc)efj%ctfdf.
e Hyperbolic a-generalized WS: We obtain the new hyperbolic
a-generalized WS, HV\I§§(t, f), as
HWSg,a)(t7 f):fteaCKy (te(o‘_%)g7 te(a+%)<)e_j27<tfd(
wheneg\‘;\;sm, (¢, B)=e7*=¢ Note that this symbol reduces to
the HWS in (22) wher=0, and to the HKS in (23) whea=1/2.

4.2. Power smoothed symbols
We define the new power class of TF symbols for 0 as

P15, )=y I L (= - = ~())

f'mfl
PRWSS (i, f)didf, (24)
where PBWSS)(t,f) is the xkth power BWS [7] with symbol

kernel@}jﬁgws(c, b)=5(c)§(b+1), Q is defined onL»(R*1), and

the power symbol kerneﬁfﬁgc,b):@?@(c,b) in (20). Note that
whenk=1, the PT$S> reduce to the affine smoothed symbols in
(20).

The class in (24) preserves power time shifts and scale changes
on a random process (f), i.e.

y(O=(FX (e ) ()=

TS (1, )=PTSE (1 -5 (2 ),




y(t)=v/lalz(at) = PTS(t, f) = PTSY (at, f/a)

wheref, > 0 is a fixed reference frequency.
4.3. Exponential smoothed symbols
We define the new class of exponential smoothed symbols as

B) _ 74 Fleeg b d (F=£)/fr
TS )= [T 1! (= =) =)

eflfr
EPWSo (£, f)didf (25)
whereQ is defined onL»(R), the exponential symbol kernel is
géﬁ)s(c b)= §(A)(c b) in (20) and EBWSqo (¢, f) is the exponen-
tial PoWS [7] with kemneldgy) s(c, b)=3(c)d(b + 1). The class

of exponential symbols, E1§) (t, f), preserves exponential time
shifts and constant frequency shifts on a random process,

O=(F X (e ) ()=
ETS) (¢, f)=ETSP(t - C 1,

_ j2mvt E) _ E)
y(t) = 2(t)e’™ ™ = ETS (¢, f) = ETS(»Rw (t, f —v).

4.4. Generalized frequency-shift covariant symbols

We propose aewclass of TF symbols, GT. c)(t,f), that pre-

y(O)=(F X () (1) =
CeLy .

GTS A (t, N)=GTST ™ (t— (5

Depending on the warping functigib), the GTS%4) in (27)
can be simplified to a specific class of affine symbols. For exam-
ple, we obtain the TS" in (20) when¢ (b) = b, the PTS in (24)
whené(b) = b* and the ETS?) in (25) when (b) = €°.

5. CONCLUSION

In this paper, we proposetewclasses of smoothed versions of the
narrowband Weyl symbol and the wideband Weyl symbol. These
new symbols preserve important changes on a random process.
For example, a smoothed version of the narrowband WS preserves
constant TF shifts on a random process and belongs todihe
class of TF shift covariant symbols. Tinewsymbols formulate

the quadratic form of a random process with corresponding QT-
FRs. We showed that a symbol kernel is identical to its associated
QTFR kernel if the QTFR is unitary. We also proposed generalized
formulations of smoothed symbols. We provided special examples
of generalized smoothed symbols (e.g. hyperbolic smoothed sym-
bols, power smoothed symbols, and exponential smoothed sym-
bols). For example, we derived the hyperbolic Weyl symbol, hy-
perbolic Kohn-Nirenberg symbol, hyperbolic Levin symbol and
hyperbolic Page symbol as hyperbolic smoothed symbols.
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