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ABSTRACT ing, which, due to their computational simplicity, are routinely

Inthi . . used in real clinical settings.

n this paper, we extend a m“'“scf""e Bayesian approac_h to mod- Projection data in ECT consists of a collection of counts which
eling anql estimation .Of general Poisson processes prewoqsl)_/ de'are Poisson distributed. We wish to estimate the underlying in-
veloped in [1] by the first two a%*thors‘ and apply '.t to the emission tensity and reconstruct the image. There are some important ad-
computed tomo_graph_y (ECT) image re(_:onstruct_lon problem. we vantages to carrying out this estimation in a multiscale Bayesian
develop a practical prior model for the sinogram image, which we framework:

use to estimate the underlying sinogram intensity from the raw pro- ’

jection data prior reconstruction. This sinogram estimate is then e Useful Bayesian priors are easily specified in the scale-

used in conjunction with the standard filtered-backprojection algo- domain; thus, a computationally efficient and mathematically

rithm to produce an improved image reconstruction. The impact simple estimator can be devised.

of the new filtering approach on ECT imaging is illustrated with 4 coarse-scale estimators of intensities are very reliable (high
simulated and clinical data. SNRY); thus, reliable information can be passed to finer scales

to leverage their estimate.

1. INTRODUCTION e Bayesian estimation of scaling coefficients is optimal (in a
mean square error sense); thus, the estimation process opti-

Computed tomography (CT) imaging is an important imaging mally adapts to local features of the underlying intensity.

technique widely used in medicine, seismology, astronomy, and
other fields of science and engineering. In some areas, most¥Ve will elaborate on these points later in the paper.

notably single photon emission computed tomograg8PECT) To be specific throughout the paper, we consider only SPECT as
andpositron emission tomographPET), the tomographic image  an example of emission tomography. Extensions to other applica-
studies begin with photon-limited projection data, the statistics tions such a PET are possible. The general SPECT problem is re-
of which are well modeled by the Poisson distribution. We re- Viewed in Section 2. In Section 3, we briefly review the multiscale
fer to such problems as emission computed tomography (ECT),muItipIicative innovations (MMI) probability model for intensity
Traditionally, classical reconstruction methods.gf, filtered- functions previously introduced in [1]. The MMI model is the
backprojection) applied to ECT produce undesirable and highly cornerstone for the proposed improved ECT image reconstruction
variable image reconstructions due to the “Poisson noise” in the process as it provides a practical prior model for the estimation of
projection dat&. It is common in practice to postprocess the raw the sinogram image. In Section 4, we apply the multiscale model
reconstructions with a lowpass smoothing filter to improve the and estimator to SPECT imaging, and present two illustrative ex-
images. However, such postprocessing can lead to a detrimenta@mples. Concluding remarks are given in Section 5.

loss in resolution and fine detail structure. More sophisticated ap-

proaches have been proposed (see Section 2 for a brief review), but 2. EMISSION COMPUTED TOMOGRAPHY

these methods tend to be very computationally expensive.

In this paper we extend a multiscale-based modeling and es-|n SPECT a patient is injected with a radiopharmaceutical which
timation approach for general Poisson processes previously dejs targeted for uptake by the specific organ(s) of interest. As the
veloped by the first two authors in [1], and apply it to the ECT nyclear decay process takes place, photons are emitted in all di-
problem. We develop a realistic and practical prior probability rections and registered upon their arrival by an array of detectors
model for the sinogram image, and use it to compute a Bayes-|ocated in close proximity to the patient. The array is repositioned
optimal estimate of the intensities underlying the “data” sinogram at many different angles, about the subject so that counts of
constructed from the raw projection data. Using this optimal sino- photonsc} may be obtained for each angle and each detedctor
gram estimate and a standard filter-backprojection algorithm, we Each data projection”™ = (C?)Q’:ol is Poisson distributed with an
are able to produce significantly improved image reconstructions. underlying intensitA” = ()\n)I\T—ll

. 7 . . k/)k=0
F\’_emarkably, this new method is no more computgtlonally INten- ) o A(z) denote the 2-dimensional distribution of radiophar-
sive than standard approaches based on lowpass filter postprocesg;a e tical in the plane of interest within the patient. In nuclear
This work was supported by the National Science Foundation, grant medicine, this_distribution can provid_e_ anatomical information'or
no. MIP—9701692 may be an indicator of functional activity [2]. The goal of ECT is
1Through0ut the paper we use the term noise as a matter of conve-10 reconstruct an estimate of this distribution from the projection
nience. data.




Ignoring attenuation effects and other disturbances in the data
collection process, the intensiti€A™ } correspond to projections
of A(z) along rays perpendicular to a photon detection array,
which records the the location of each photon event impinging the
array. The array of intensity vectofa’, ..., AN "] is called
the sinogram(see Figure 3 (a)), which represents an incomplete
Radon transfornof A(z).

Conventional SPECT methods first reconstruct a noisy approx-
imation to A(z) by computing the inverse Radon transform of
the “data” sinograme = [c°,...,¢" '] and then lowpass fil-
tering the reconstruction to mitigate the noise in the image [2].
The filtered-back-projection reconstruction method [3] is the most Fi . . T .

igure 1: Multiscale multiplicative innovations model. A coarse-

commionly used _(approxma_lte) Radon inversion technique. Al- scale probability model of the intensity is refined via multiplicative
though computationally efficient, these approaches tend to produce

excessive blurring and destroy fine features of the intensity. To re- perturbations.

duce the need for an ‘aggressive’ lowpass filter in the final stage

of reconstruction, a number of methods reduce the noise in the . .

data projections by attenuating their high frequencies [4]. More forj = J —1ldowntoj =1andfork =0toN/2/ —1.
advanced methods estimate the intensity of the projectjoris The functional relations among the variates defined in this man-
from the noisy data to account for the statistical characteristics ner are display by the binary tree of Figure 1 fér= 8. Since the
of the noise. For example, Wiener filtering [5] approaches have coefficients in this structure also obey

been applied to the projections prior reconstruction. Furthermore,

(fully) Bayesian approaches to this problem have been proposed Ajp =AM 108 +Aj 12011 2
based on Markov random field modeésg, [6, 7]. However, in

comparison to those methods, our new multiscale framework is we may regard each vecty to be a realization of its correspond-
very computationally efficient, while still providing high-quality  ing random sequenck;.

reconstructions. The information required to construct a representation at scale
j — 1 from the one representation at scaise conveyed by the rv's
3. MULTISCALE MODELING AND ESTIMATION OF {Y; « }» in amultiplicative fashion, and so, we call thenultiscale
POISSON PROCESSES multiplicative innovationgMMI).
To complete the MMI prior probability model, we restrict the
3.1. The Multiscale Multiplicative Model set of innovations(Yj i };» to be independent. In addition, we

impose prior distributiong’s (\) on Ao and f;(y) on each in-
novationY; , for everyj andk. Modeling the innovations at a
given scale as identically distributed is not essential, but it leads to
a practical and simpler model. One possible choiceffqm\) is

the Gamma distribution, and fg¥ (y), a mixture of beta densities

In this subsection, we review a multiscale probability model for
positive intensities developed in [1]; only 1-D intensities are con-
sidered for simplicity (see [8] for an extension to the 2-D case).
We begin by letting\g = (Ao,k)f;_ol represent a sequence of
integrated values of a positive functior{z) defined in the unit

; of the form
interval,i.e, Ao = k(/k;l)/N A(z) dz, for example, a spatial
distribution of radioactive material. A multiscale representation of M siml(] —gy)si~!
Ao may be obtained by iteratin fily) = E il ®3)
0 y y g J — 7 B(Si, Si)
i=

Ajk = Aj_12k + Ajo1,2k41 1)
forj =1,...,J andk = 0,...,N/2’ — 1. Each coefficient ~ for 0 <y < 1. Bis the Euler beta functior} < p;; < 1is the

A,k is simply the un-normalized Haar scaling coefficient at scale weight of thei-th beta density with parametey, ande‘i1 pji =
4 and shiftk of the original intensity\o. Note that (1) is equivalent 1. These choices are justified in [1].

to defining the coefficients b; , = ;;Iff;wN A(z)dz. This
shows that\; = (A;,x)x is a lower resolution representation of  3.2. Shift-Invariant MMI model
the intensity thar\;_1 = (A\j—1,% ). o _ _

Avery Simp|e multiscale prior model for the intensﬁy can be A drawback of the MMI model is its shift variant nature. In gen-
constructed as follows. LeY;, be a random variable (rv) whose ~ €ral, for an identical set of realizatioq9\.s0} U {y;,x };,x, there
sample space is the positive real line, andiigt be an indepen- correspondV/2 possible distinct outcome intensitids depend-

dent rv whose possible outcomes are the pointfjn]. Next, ing on the alignment of the intensity with respect to the binary tree;
define the sequencA;_; = (Ay_1.0,As_11) by Aj_1o = one for each distinct circular shift or displacement. One only need

AsoYso andAs 11 = Aso(l — Yso). Now, corresponding  inspect Figure 1 to realize that not every two adjacent elements of
to each element ; ;, introduce independent A ;, with support A, have the same functional correspondence. To remove this de-

on |0, 1], and define ‘even’ and ‘odd’ children coefficients_; o, ficiency, we take_ a Bayesian approa(_:h, and view each alignme_nt
andA;_; sx41 by of the model’s binary tree as an additional degree of freedom in
the model. Then, if we regard the original model as “unshifted”
Nj—rok = AjrYjk (shift=0), the standard MMI model introduced above is denoted

ANj—r1okt1 = MNr(1=Yje) f(A]0). With P(shi ft = m) denoting the probability mass func-



tion for each shift, we have

N/2—1

> FAIm)P(shift = m)

m=0

)

Since there is no reas@rpriori to favor any one possible shift, we
take Rshift = m) = 2/N:

N/2—1

=5 iam)

Thus, a shift-invariant MMI model is constructed by simply aver-
aging over all possible distinct alignments of the unshifted model.
The key properties of the SI-MMI model are:

) (4)

e The model included/f-type processes [8], often used to
model real-world imagery [9].

e The model provides a mathematically tractable match to the
Poisson nature of the data. This will become evident in the
next section.

3.3. Optimal Estimation of Poisson Processes

Now using the MMI prior model, we can derive a simple scale-
domain Bayesian estimator. We observe courasd wish to es-
timate their underlying intensiti\. We regard the data to be a
realization of a random sequen€ewhich is Poisson distributed
with parametet\. The intensityA itself is thought, as before, to
be an unknown realizatign of a random sequeAcaNe seek the
posterior mean estimate\ = E[A|C = c].

The multiscale approach to this estimation proceeds as follows.
First, a multiscale analysis on the data is obtained: Wedlet ¢
and iterate

Cjk = Cj—1,2k + Cj—1,2k+1

forj =1,...,J andk = 0,...,N/2/ — 1. Then, due to the
typical highASNﬁ of the coefficient,¢ a robust estimate fox o
is given byAso = E[Asole] = E[Aso|er0] = ca0.

We obtain higher resolution estimates of the intensity in a re-
cursive manner as follows. In general; is a sufficient statis-
tic for Aj, and c¢j_1,2r and c¢j_1,2k+1 are sufficient statistics
for y;,x [10]. This justifies the estimatg;, = E[Yjk|c] =
E[Y] klcj—1,2k, ¢j—1,2k+1]. Using (3), it is shown in [1] that this
estimate is given by

~ B(sitcj—1,2k8it¢i—1,2k41)
~ 1 l+d Eipw Bs;,51) (25;+¢5.8)
Yik = 2 ik Z  B(sitcj_1,2k,8i+¢j—1,2k41)
i Pi B(s;,8)

®)
Wheredj,k =Cj—1,2k — Cj—1,2k+1-
Now, exploiting the independence of the innovation variates, the
estimates for all coefficients from scalgs= .J — 1 down to scale
j = 0 are iteratively obtained by

~
~

ElAj—12kle] = Nk Yjk

E[Aj—12kt1le] = Ajx (1= 5j.)

2|tis easily verified that in a Poisson process the SNR increases linearly
with the underlying intensity. For example, for a 128 by 128 pixel image,
the SNR at scald is 42 dB larger as that for the average data pejnt.

Aj_1,2k

Aj_1,2k41

The desired estimate is simp;y = Xo. In general, the com-
plexity of the proposed estimation filter@¥(N). A shift-invariant
estimate can be obtained by averaging intensity estimates resulting
from different shifts of the data together, requiri@®§Nlog/V') op-
erations [8]. Furthmore, a similar multiscale analysis and estima-
tion procedure can be easily developed for the 2-d case using a 2-d
Haar-like decomposition [8, 11].

4. APPLICATION TO SPECT IMAGING

An intuitively appealing approach to the emission tomographical
imaging problem would be to model each individual projectdn
using the SI-MMI model and estimate them from the projection
data; then, using the estimat{z)s"} reconstruct the image. This
approach, however, has been found to produce circular artifacts in
the final image due to a ‘lack of coordination’ among the other-
wise highly correlated intensity projections. To correct for this de-
ficiency, we apply a two dimensional version of the SI-MMI model
and estimate the underlying “intensity” sinogram. In this manner,
not only will the estimation be coordinated and avoid artifacts, but
also it will enhance the performance of the estimator by exploiting
the highly structured correlation typical of the data sinogram. For
example, consider the data sinogram of a pelvic slice image shown
in Figure 3(a). Our new ECT algorithm is described as follows.

Multiscale Sinogram Estimation and ECT Reconstruction

1. Form “data” sinogram from observed projection data
2. Estimate underling “intensity” sinogram using 2-d versjon
of the estimation method described in Section 3.

Reconstruct image from estimated sinogram using stan-

dard filtered backprojection algorithm.

4.1. Examples

To demonstrate the performance of the new approach to ECT, we
have applied it to two sets of data: the Shepp Logan head phantom
(shown in Figure 2(a)), and real data from a human pelvic clini-
cal study. The two data sets have been processed in three different
ways so that comparisons can be made and a relative degree of
performance can be determined. In Figure 2(b), an (unprocessed)
reconstruction of the phantom data, based on Poisson data projec-
tions, is presented. Figure 2(c) show a lowpass filtevedsion of

2(b). The smoothing process removes high frequency noise at the
expense of some high definition detail in the image. Finally, Fig-
ure 2(d) displays the reconstructed image using the new sinogram
estimation method. In this new image, high definition features
(e.g, edges) are clearly preserved despite the high degree of noise
reduction.

Figures 3(b), (c), and (d) of the pelvic bone study were obtained
by the same processes used in the corresponding phantom figures.
Note that in Figure 3(d), the high definition image structure be-
comes evident after processing according to the new approach.
This is in contrast with the result in (c), where the image is seen to
be oversmoothed to achieve a similar degree of noise removal.

3A 2-d Butterworth filter with cut-offr /3 rad. was used in both exam-
ples in this section.



5. CONCLUDING REMARKS

We have introduced a new approach to ECT imaging based o
the multiscale multiplicative model previously developed by two
of the authors. We extended the MMI prior model to the shift
invariant SI-MMI model, and use it to estimate the sinogram from
photon-limited data. We found that by working with the projection
data directly, we were able to model the true Poisson nature of th
data sinogram and, thus, avoided making inaccurate assumption
about the statistics in the reconstructed image. Also, by working
with the sinogram we were able to exploit the strong correlation
in the data sinogram to leverage the estimation process. Example

with synthetic and clinical data demonstrated the performance of @) (b)
our new method.

© (d)

(b) Figure 3: Pelvic bone study image reconstruction. (a) Sinogram
of pelvic bone. (b) Pelvic bone reconstruction from noisy data. (c)
Lowpass filtered image from (b). (d) Pelvic bone reconstruction
from MMlI-processed sinogram.
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