
IMPROVED EMISSION TOMOGRAPHY VIA MULTISCALE SINOGRAM ANALYSIS

K. E. Timmermann, R. D. Nowak, and K. J. Jones

Michigan State University
East Lansing, MI 48824
timmerm4@egr.msu.edu

ABSTRACT

In this paper, we extend a multiscale Bayesian approach to mod-
eling and estimation of general Poisson processes previously de-
veloped in [1] by the first two authors, and apply it to the emission
computed tomography (ECT) image reconstruction problem. We
develop a practical prior model for the sinogram image, which we
use to estimate the underlying sinogram intensity from the raw pro-
jection data prior reconstruction. This sinogram estimate is then
used in conjunction with the standard filtered-backprojection algo-
rithm to produce an improved image reconstruction. The impact
of the new filtering approach on ECT imaging is illustrated with
simulated and clinical data.

1. INTRODUCTION

Computed tomography (CT) imaging is an important imaging
technique widely used in medicine, seismology, astronomy, and
other fields of science and engineering. In some areas, most
notably single photon emission computed tomography(SPECT)
andpositron emission tomography(PET), the tomographic image
studies begin with photon-limited projection data, the statistics
of which are well modeled by the Poisson distribution. We re-
fer to such problems as emission computed tomography (ECT).
Traditionally, classical reconstruction methods (e.g., filtered-
backprojection) applied to ECT produce undesirable and highly
variable image reconstructions due to the “Poisson noise” in the
projection data1. It is common in practice to postprocess the raw
reconstructions with a lowpass smoothing filter to improve the
images. However, such postprocessing can lead to a detrimental
loss in resolution and fine detail structure. More sophisticated ap-
proaches have been proposed (see Section 2 for a brief review), but
these methods tend to be very computationally expensive.

In this paper we extend a multiscale-based modeling and es-
timation approach for general Poisson processes previously de-
veloped by the first two authors in [1], and apply it to the ECT
problem. We develop a realistic and practical prior probability
model for the sinogram image, and use it to compute a Bayes-
optimal estimate of the intensities underlying the “data” sinogram
constructed from the raw projection data. Using this optimal sino-
gram estimate and a standard filter-backprojection algorithm, we
are able to produce significantly improved image reconstructions.
Remarkably, this new method is no more computationally inten-
sive than standard approaches based on lowpass filter postprocess-
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1Throughout the paper we use the term noise as a matter of conve-
nience.

ing, which, due to their computational simplicity, are routinely
used in real clinical settings.

Projection data in ECT consists of a collection of counts which
are Poisson distributed. We wish to estimate the underlying in-
tensity and reconstruct the image. There are some important ad-
vantages to carrying out this estimation in a multiscale Bayesian
framework:

� Useful Bayesian priors are easily specified in the scale-
domain; thus, a computationally efficient and mathematically
simple estimator can be devised.

� Coarse-scale estimators of intensities are very reliable (high
SNR); thus, reliable information can be passed to finer scales
to leverage their estimate.

� Bayesian estimation of scaling coefficients is optimal (in a
mean square error sense); thus, the estimation process opti-
mally adapts to local features of the underlying intensity.

We will elaborate on these points later in the paper.
To be specific throughout the paper, we consider only SPECT as

an example of emission tomography. Extensions to other applica-
tions such a PET are possible. The general SPECT problem is re-
viewed in Section 2. In Section 3, we briefly review the multiscale
multiplicative innovations (MMI) probability model for intensity
functions previously introduced in [1]. The MMI model is the
cornerstone for the proposed improved ECT image reconstruction
process as it provides a practical prior model for the estimation of
the sinogram image. In Section 4, we apply the multiscale model
and estimator to SPECT imaging, and present two illustrative ex-
amples. Concluding remarks are given in Section 5.

2. EMISSION COMPUTED TOMOGRAPHY

In SPECT a patient is injected with a radiopharmaceutical which
is targeted for uptake by the specific organ(s) of interest. As the
nuclear decay process takes place, photons are emitted in all di-
rections and registered upon their arrival by an array of detectors
located in close proximity to the patient. The array is repositioned
at many different angles�n about the subject so that counts of
photonscnk may be obtained for each angle and each detectork.
Each data projectioncn = (cnk )

N�1
k=0 is Poisson distributed with an

underlying intensity�n = (�nk )
N�1
k=0 .

Let �(x) denote the 2-dimensional distribution of radiophar-
maceutical in the plane of interest within the patient. In nuclear
medicine, this distribution can provide anatomical information or
may be an indicator of functional activity [2]. The goal of ECT is
to reconstruct an estimate of this distribution from the projection
data.



Ignoring attenuation effects and other disturbances in the data
collection process, the intensitiesf�ng correspond to projections
of �(x) along rays perpendicular to a photon detection array,
which records the the location of each photon event impinging the
array. The array of intensity vectors[�0; : : : ;�(N�1)] is called
the sinogram(see Figure 3 (a)), which represents an incomplete
Radon transformof �(x).

Conventional SPECT methods first reconstruct a noisy approx-
imation to �(x) by computing the inverse Radon transform of
the “data” sinogramc = [c0; : : : ; cN�1] and then lowpass fil-
tering the reconstruction to mitigate the noise in the image [2].
The filtered-back-projection reconstruction method [3] is the most
commonly used (approximate) Radon inversion technique. Al-
though computationally efficient, these approaches tend to produce
excessive blurring and destroy fine features of the intensity. To re-
duce the need for an ‘aggressive’ lowpass filter in the final stage
of reconstruction, a number of methods reduce the noise in the
data projections by attenuating their high frequencies [4]. More
advanced methods estimate the intensity of the projectionsf�ng
from the noisy data to account for the statistical characteristics
of the noise. For example, Wiener filtering [5] approaches have
been applied to the projections prior reconstruction. Furthermore,
(fully) Bayesian approaches to this problem have been proposed
based on Markov random field models,e.g., [6, 7]. However, in
comparison to those methods, our new multiscale framework is
very computationally efficient, while still providing high-quality
reconstructions.

3. MULTISCALE MODELING AND ESTIMATION OF
POISSON PROCESSES

3.1. The Multiscale Multiplicative Model

In this subsection, we review a multiscale probability model for
positive intensities developed in [1]; only 1-D intensities are con-
sidered for simplicity (see [8] for an extension to the 2-D case).

We begin by letting�0 = (�0;k)
N�1
k=0 represent a sequence of

integrated values of a positive function�(x) defined in the unit

interval, i.e., �0;k =
R (k+1)=N
k=N

�(x)dx, for example, a spatial
distribution of radioactive material. A multiscale representation of
�0 may be obtained by iterating

�j;k = �j�1;2k + �j�1;2k+1 (1)

for j = 1; : : : ; J andk = 0; : : : ; N=2j � 1. Each coefficient
�j;k is simply the un-normalized Haar scaling coefficient at scale
j and shiftk of the original intensity�0. Note that (1) is equivalent

to defining the coefficients by�j;k =
R 2j(k+1)=N
2jk=N

�(x)dx. This

shows that�j = (�j;k)k is a lower resolution representation of
the intensity than�j�1 = (�j�1;k)k.

A very simple multiscale prior model for the intensity�0 can be
constructed as follows. Let�J;0 be a random variable (rv) whose
sample space is the positive real line, and letYJ;0 be an indepen-
dent rv whose possible outcomes are the points in[0; 1]. Next,
define the sequence�J�1 = (�J�1;0;�J�1;1) by �J�1;0 =
�J;0YJ;0 and�J�1;1 = �J;0(1 � YJ;0). Now, corresponding
to each element�j;k, introduce independent rvYj;k with support
on [0; 1], and define ‘even’ and ‘odd’ children coefficients�j�1;2k
and�j�1;2k+1 by

�j�1;2k = �j;kYj;k

�j�1;2k+1 = �j;k(1� Yj;k)
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Figure 1: Multiscale multiplicative innovations model. A coarse-
scale probability model of the intensity is refined via multiplicative
perturbations.

for j = J � 1 down toj = 1 and fork = 0 toN=2j � 1.
The functional relations among the variates defined in this man-

ner are display by the binary tree of Figure 1 forN = 8. Since the
coefficients in this structure also obey

�j;k = �j�1;2k + �j�1;2k+1 (2)

we may regard each vector�j to be a realization of its correspond-
ing random sequence�j .

The information required to construct a representation at scale
j�1 from the one representation at scalej is conveyed by the rv’s
fYj;kgk in a multiplicative fashion, and so, we call themmultiscale
multiplicative innovations(MMI).

To complete the MMI prior probability model, we restrict the
set of innovationsfYj;kgj;k to be independent. In addition, we
impose prior distributionsfJ(�) on �J;0 andfj(y) on each in-
novationYj;k for every j andk. Modeling the innovations at a
given scale as identically distributed is not essential, but it leads to
a practical and simpler model. One possible choice forfJ(�) is
the Gamma distribution, and forfj(y), a mixture of beta densities
of the form

fj(y) =

MX
i=1

pj;i
ysi�1(1� y)si�1

B(si; si)
(3)

for 0 � y � 1. B is the Euler beta function,0 � pj;i � 1 is the
weight of thei-th beta density with parametersi, and

PM

i=1
pj;i =

1. These choices are justified in [1].

3.2. Shift-Invariant MMI model

A drawback of the MMI model is its shift variant nature. In gen-
eral, for an identical set of realizationsf�J;0g [ fyj;kgj;k, there
correspondN=2 possible distinct outcome intensities�0 depend-
ing on the alignment of the intensity with respect to the binary tree;
one for each distinct circular shift or displacement. One only need
inspect Figure 1 to realize that not every two adjacent elements of
�0 have the same functional correspondence. To remove this de-
ficiency, we take a Bayesian approach, and view each alignment
of the model’s binary tree as an additional degree of freedom in
the model. Then, if we regard the original model as “unshifted”
(shift=0), the standard MMI model introduced above is denoted
f(�j0). With P(shift = m) denoting the probability mass func-



tion for each shift, we have

f(�) =

N=2�1X
m=0

f(�jm)P(shift = m)

Since there is no reasona priori to favor any one possible shift, we
take P(shift = m) = 2=N :

f(�) =
2

N

N=2�1X
m=0

f(�jm) (4)

Thus, a shift-invariant MMI model is constructed by simply aver-
aging over all possible distinct alignments of the unshifted model.

The key properties of the SI-MMI model are:

� The model includes1=f -type processes [8], often used to
model real-world imagery [9].

� The model provides a mathematically tractable match to the
Poisson nature of the data. This will become evident in the
next section.

3.3. Optimal Estimation of Poisson Processes

Now using the MMI prior model, we can derive a simple scale-
domain Bayesian estimator. We observe countsc and wish to es-
timate their underlying intensity�. We regard the datac to be a
realization of a random sequenceC which is Poisson distributed
with parameter�. The intensity� itself is thought, as before, to
be an unknown realization of a random sequence�. We seek the
posterior mean estimateb� � E[�jC = c].

The multiscale approach to this estimation proceeds as follows.
First, a multiscale analysis on the data is obtained: We letc0 = c

and iterate

cj;k = cj�1;2k + cj�1;2k+1

for j = 1; : : : ; J andk = 0; : : : ; N=2j � 1. Then, due to the
typical high SNR2 of the coefficientcJ;0 a robust estimate for�J;0
is given byb�J;0 � E [�J;0jc] = E [�J;0jcJ;0] � cJ;0.

We obtain higher resolution estimates of the intensity in a re-
cursive manner as follows. In general,cj is a sufficient statis-
tic for �j , and cj�1;2k and cj�1;2k+1 are sufficient statistics
for yj;k [10]. This justifies the estimatebyj;k � E [Yj;kjc] =
E [Yj;kjcj�1;2k; cj�1;2k+1]. Using (3), it is shown in [1] that this
estimate is given by

byj;k =
1

2

 
1 + dj;k

P
i
pj;i

B(si+cj�1;2k ;si+cj�1;2k+1)

B(si;si) (2si+cj;k)P
i
pi

B(si+cj�1;2k ;si+cj�1;2k+1)

B(si;si)

!
(5)

wheredj;k = cj�1;2k � cj�1;2k+1.
Now, exploiting the independence of the innovation variates, the

estimates for all coefficients from scalesj = J � 1 down to scale
j = 0 are iteratively obtained byb�j�1;2k � E [�j�1;2k jc] = b�j;k byj;kb�j�1;2k+1 � E [�j�1;2k+1jc] = b�j;k (1� byj;k)

2It is easily verified that in a Poisson process the SNR increases linearly
with the underlying intensity. For example, for a 128 by 128 pixel image,
the SNR at scaleJ is 42 dB larger as that for the average data pointc0;k.

The desired estimate is simplyb� = b�0. In general, the com-
plexity of the proposed estimation filter isO(N). A shift-invariant
estimate can be obtained by averaging intensity estimates resulting
from different shifts of the data together, requiringO(N logN) op-
erations [8]. Furthmore, a similar multiscale analysis and estima-
tion procedure can be easily developed for the 2-d case using a 2-d
Haar-like decomposition [8, 11].

4. APPLICATION TO SPECT IMAGING

An intuitively appealing approach to the emission tomographical
imaging problem would be to model each individual projection�

n

using the SI-MMI model and estimate them from the projection
data; then, using the estimatesfb�ng reconstruct the image. This
approach, however, has been found to produce circular artifacts in
the final image due to a ‘lack of coordination’ among the other-
wise highly correlated intensity projections. To correct for this de-
ficiency, we apply a two dimensional version of the SI-MMI model
and estimate the underlying “intensity” sinogram. In this manner,
not only will the estimation be coordinated and avoid artifacts, but
also it will enhance the performance of the estimator by exploiting
the highly structured correlation typical of the data sinogram. For
example, consider the data sinogram of a pelvic slice image shown
in Figure 3(a). Our new ECT algorithm is described as follows.

Multiscale Sinogram Estimation and ECT Reconstruction

1. Form “data” sinogram from observed projection data

2. Estimate underling “intensity” sinogram using 2-d version
of the estimation method described in Section 3.

3. Reconstruct image from estimated sinogram using stan-
dard filtered backprojection algorithm.

4.1. Examples

To demonstrate the performance of the new approach to ECT, we
have applied it to two sets of data: the Shepp Logan head phantom
(shown in Figure 2(a)), and real data from a human pelvic clini-
cal study. The two data sets have been processed in three different
ways so that comparisons can be made and a relative degree of
performance can be determined. In Figure 2(b), an (unprocessed)
reconstruction of the phantom data, based on Poisson data projec-
tions, is presented. Figure 2(c) show a lowpass filtered3 version of
2(b). The smoothing process removes high frequency noise at the
expense of some high definition detail in the image. Finally, Fig-
ure 2(d) displays the reconstructed image using the new sinogram
estimation method. In this new image, high definition features
(e.g., edges) are clearly preserved despite the high degree of noise
reduction.

Figures 3(b), (c), and (d) of the pelvic bone study were obtained
by the same processes used in the corresponding phantom figures.
Note that in Figure 3(d), the high definition image structure be-
comes evident after processing according to the new approach.
This is in contrast with the result in (c), where the image is seen to
be oversmoothed to achieve a similar degree of noise removal.

3A 2-d Butterworth filter with cut-off�=3 rad. was used in both exam-
ples in this section.



5. CONCLUDING REMARKS

We have introduced a new approach to ECT imaging based on
the multiscale multiplicative model previously developed by two
of the authors. We extended the MMI prior model to the shift
invariant SI-MMI model, and use it to estimate the sinogram from
photon-limited data. We found that by working with the projection
data directly, we were able to model the true Poisson nature of the
data sinogram and, thus, avoided making inaccurate assumptions
about the statistics in the reconstructed image. Also, by working
with the sinogram we were able to exploit the strong correlation
in the data sinogram to leverage the estimation process. Examples
with synthetic and clinical data demonstrated the performance of
our new method.

(a) (b)

(c) (d)

Figure 2: Shepp Logan head phantom image reconstruction. (a)
Phantom. (b) Phantom reconstruction from noisy data. (c) Low-
pass filtered image from (b). (d) Phantom reconstruction from
MMI-processed sinogram.
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