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ABSTRACT

We propose a method for sinusoidal modeling that takes into ac-
count the psychoacoustics of human hearing using a frame-based
perceptually weighted matching pursuit. Working on blocks of
the input signal, a set of sinusoidal components for each block
is iteratively extracted taking into consideration perceptual signif-
icance by using extensions to the well known matching pursuits
algorithm. These extensions allow including information about
the time-varying masking threshold of the input signal during the
pursuit. The blocks overlap-add together to reconstruct the entire
signal. Although the perceptually weighted matching pursuit on
each block can iterate until the error between the original and the
reconstructed signal is zero, lower order approximations are possi-
ble by stopping the pursuit when the error becomes imperceptible
to the human ear or by stopping the pursuit after a number of the
perceptually most significant sinusoidal elements are found. The
proposed sinusoidal model finds use in many applications includ-
ing signal modifications and compression.

1. INTRODUCTION

Sinusoidal modeling has seen extensive use in a wide range of
speech and audio applications including compression, signal mod-
ifications, and audio scene analysis. Many formulations for sinu-
soidal modeling exist, some based on spectral peak picking algo-
rithms [1, 2] while others use frame-based analysis-by-synthesis
techniques [3]. Although the implementations of these techniques
are quite different, the goal is the same: for thelth frame of the in-
put, find a set ofK sinusoidal signals parameterized byamplitude,
frequencyand phase. Although each formulation has its advan-
tages, analysis-by-synthesis techniques guarantee convergence in
the sense that the error between the original and the reconstructed
signal can be forced to zero. Current analysis-by-synthesis formu-
lations converge in a way that minimizes the mean-square of the
error at each iteration. As such, each iteration of the analysis-by-
synthesis algorithm finds and removes the sinusoidal component
in a frame of the input signal that contains the greatest energy.
Here we present a formulation for analysis-by-synthesis sinusoidal
modeling that takes into account the psychoacoustics of the human
hearing system by using perceptually weighted matching pursuits.
In an iterative fashion, the algorithm finds and removes the percep-
tually most significant sinusoidal components in a frame of input
signal. Therefore, instead of removing the sinusoidal component
that contains the greatest energy at each iteration, our algorithm
removes the sinusoidal component that contains the greatest per-
ceived energy at each iteration.

The first section of the paper describes both parsing of the

input signal into frames and how these frames are put back to-
gether to produce a reconstructed signal. On each of the frames,
a perceptually weighted matching pursuit is performed. Use of
the matching pursuits algorithm [4] as a general framework for
analysis-by-synthesis techniques allows previous results in the lit-
erature to facilitate the proof of convergence of our algorithm. Sec-
tion 3 gives a brief review of the matching pursuit algorithm be-
fore examining how to make matching pursuits equivalent to an
analysis-by-synthesis sinusoidal modeling technique that includes
psychoacoustic phenomena. The section ends by showing that the
perceptually weighted matching pursuit algorithm has an intuitive
interpretation in terms of the Discrete Fourier Transform (DFT)
and can be efficiently computed via the Fast Fourier Transform
(FFT). Section 4 shows an example of the algorithm and the final
section gives conclusions.

2. OVERLAP-ADD FORMULATION

In our formulation of sinusoidal modeling, frames of the input sig-
nal x are represented as a combination of sinusoidal signals. The
combination of sinusoids for each frame, as will be described, is
found via perceptually weighted matching pursuits. These frames
are combined in an overlap-add fashion to reconstruct the entire
signal. Mathematically, we takex = fx[n]; n 2 Zg and make an
ensemble of timelimited signalsxl = fxl[n]; n 2 Zg by hopping
a rectangular window over signal. Let thelth windowed signal be

xl[n] = uN [n� lp]x[n] (1)

whereN is the length of the window,p is stride length of the
window constrained so thatp � N , and the rectangular window is

uN [n] =

�
1 n = 0; 1; : : : ; N � 1
0 otherwise

Each of these timelimited signals can then be considered a finite
duration signal inRN to which weighted matching pursuits are
applied. Although we consider each timelimited signal a finite du-
ration signal, we keep track of the time location of each frame to
ensure proper reconstruction. As such, the matching pursuit re-
construction of each frame,̂xl = fx̂l[n]; n 2 Zg, is once again
considered an ensemble of timelimited signals. Finally, the ap-
proximation tox, x̂ = fx̂[n]; n 2 Zg, is completed with a win-
dowed overlap-add reconstruction of the form:

x̂[n] =
X
l

v [n� lp] x̂l[n] (2)



where the timelimited reconstruction windowv has the constraintX
l

v [n� lp] = 1 (3)

If the error of the matching pursuit on each of thexl signals con-
verges to zero, the formulation allows perfect reconstruction which
is immediate from plugging (1), which is the error-free matching
pursuit decomposition of each frame, into equation (2) and using
the window constraint from equation (3).

3. PERCEPTUALLY WEIGHTED MATCHING PURSUIT
FORMULATION

With the overlap-add framework described, we now focus on a per-
ceptually weighted matching pursuit. In this section, we will con-
sider the matching pursuits algorithm applied to one frame, i.e.,
one of thexl signals, and consider that signal to be a column vec-
tor xl that belongs toRN . Notationally, we will use lowercase
bold letters to denote column vectors and uppercase bold letters to
denote matrices. The notationx[n] andw[n;m] denotes an ele-
ment of vectorx and matrixW respectively. In addition, we will
useX [k=M ]; k = 0; 1; : : : ;M �1 to denote theM point DFT of
x[n]; n = 0; 1; : : : ; N � 1 (if M > N zero-padding is assumed).

3.1. The Matching Pursuits Algorithm

Matching pursuits refers to an iterative method for computing sig-
nal decompositions in terms of a linear combination of vectors
from a highly redundant dictionary [4]. TheM elements of the
dictionary,D = fgmg ;m = 0; 1; : : : ;M � 1, spanRN and are
restricted to have unit norm,kgmk = 1 for all m. The algorithm
is greedy in that at each stage the vector in the dictionary that best
matches the current signal is found and subtracted to form a resid-
ual. The algorithm then continues on this residual signal. More
specifically, at thekth iteration of the algorithm, thekth indexmk

is found corresponding to the dictionary element which has the
largest correlation with thekth residualrk. This index maximizes
j hgm; rki j over allm. The projection onto this dictionary ele-
ment is then subtracted from the current residual to form the next
stage residual. Thus at thekth iteration, fork � 0, the next stage
residual isrk+1 = rk � �kgmk , where�k = hgmk ; rki. The
algorithm is initialized by settingr0 = x. Therefore, the decom-
position consists of a set of correlation termsf�0; �1; : : :g and
indicesfm0; m1; : : :g. The signal reconstruction is the weighted
linear combination of the dictionary elements found during the de-
composition, which is, if the decomposition runs forK iterations,PK�1

k=0
�kgmk .

The energy in the residual converges to zero as the number
of iterations approaches infinity [4]. Although exact reconstruc-
tion is possible, the matching pursuit is generally stopped by some
criterion to allow low order approximations to the input signal.
Appropriate stopping criteria for the perceptually based sinusoidal
model are given toward the end of section 3.4.

3.2. Sinusoidal Modeling Matching Pursuits Dictionary

It was shown in [5] that by choosing a particular matching pursuits
dictionary and by using a generalization of the matching pursuit al-
gorithm, which allows finding optimal sets of dictionary elements
(i.e., a dictionary subspace) at each iteration [4, 6], a frame-based
matching pursuit resembles a frame-based analysis-by-synthesis

sinusoidal model. The dictionary consists of complex exponen-
tials, gm =

�
gm[n] = 1

N
ej2�

m

M
n;n = 0; 1; : : : ; N � 1

	
; m =

0; 1; : : : ;M � 1, and the dictionary subspace consists of two dic-
tionary elements: a dictionary element and its complex conju-
gate. Sincexl is real, the correlation coefficients appear in con-
jugate pairs [6] and we only need to search (and compute) half of
the correlation coefficients for the absolute maximum which gives
�k = ake

j�k , the largest correlation coefficient, at thekth itera-
tion. Thus at thekth iteration the residual signal is:

rk+1[n] = rk[n] � �kgmk � ��kg
�

mk

= rk[n] �
2ak
N

cos
h
2�

mk

M
n+ �k

i
(4)

Equation (4) shows that at each iteration, the projection onto the
dictionary subspace will be a constant amplitude, constant fre-
quency cosine. The amplitude and phase for each of the cosines are
found from the correlation terms,f�0; �1; : : :g, and the frequency
for each is found from the indicesfm0;m1; : : :g by dividing by
the dictionary size,M . Although these are constant amplitude
and frequency cosines, the overlap-add formulation from section 2
provides a smooth transition from frame to frame.

3.3. Weighted Matching Pursuits

To make the matching pursuits algorithm include perceptual char-
acteristics of human hearing, we modify the pursuit in two ways.
First, we modify each of the dictionary elements by a scaler and al-
low the dictionary elements to have non-unit norms. Let the dictio-
nary weighting sequence be
 = f
[m];m = 0; 1; : : : ;M � 1g
and restrict
[m] 6= 0 for all m. In addition,
 must be real and
evenmoduloM . The dictionary now has the form

gm =
�
gm[n] = 
[m]ej2�

m

M
n; n = 0; 1; : : : ; N � 1

	
(5)

with m = 0; 1; : : : ;M � 1. Secondly, we generalize the inner
product to a weighted inner product,hx;yiW � y�Wx, where
W is a symmetric positive definite matrix. The restrictions onW
are necessary to ensure a valid inner product space [7]. In our
formulation, we will choose the dictionary weighting sequence,
,
based on psychoacoustic information andW equivalent to a win-
dow (i.e.,W is a diagonal matrix whose elements on the diagonal
are the coefficients of a window).

With these modifications, convergence of the matching pursuit
is still guaranteed; however, the rate at which convergence occurs
will in general be different. For a matching pursuit to converge in
a properly defined inner product space the dictionary vectors must
span the space, in this case,RN . A properly defined inner product
space allows projections to make sense and therefore forces en-
ergy of the residual to be monotonically decreasing. The energy
will decrease until the residual is orthogonal to every dictionary
element which will only happen when the residual is zero (since
the dictionary is required to span the space). Since we have a valid
inner product space and chose non-unit norm dictionary elements
that are complete inRN , convergence is guaranteed. The rate of
convergence, however, will be different because using unit norm
dictionary elements and a standard inner product, each iteration
of the algorithm finds the dictionary element(s) that removes the
greatest energy from the current residual [4]. With the modifica-
tions, if
 andW are chosen in a perceptually significant way, each
step of the algorithm finds the dictionary element(s) that removes
the greatest perceived energy from the current residual.



The matching pursuit algorithm remains essentially the same
except the weighted inner product must be included in all defini-
tions and non-unit norm dictionary elements must be accounted
for. Again, we need to find two dictionary elements (an element
and its complex conjugate) at each iteration. However, as shown
in the previous section, and because of the symmetry of
, we ac-
tually need only search half of the correlations and find the abso-
lute maximum because the other is given as its complex conjugate.
With this in mind, thekth index is

mk = max
m

�1

��hgm; rkiW ��
hgm;gmiW

(6)

and�k = hgmk ; rkiW = hgmk ;gmk iW is thekth correlation co-
efficient. In the next section, we show how this matching pursuit
can be efficiently implemented in terms of the FFT.

3.4. DFT Interpretation

Since each iteration of the weighted matching pursuit requiresM
weighted correlation calculations, after which the largest absolute
weighted correlation must be found, the computational complexity
is high for a general unstructured dictionary and weighting matrix
W. However, because of the choice of both the weighted dictio-
nary and the weighting matrix, we can use the DFT (or the FFT if
the number of dictionary elements is a power of2) for the correla-
tion computations. At thekth iteration, we must the compute the
inner products shown in equation (6). In the following, because
W is diagonal, we address the diagonal elements asw[n] and ig-
nore the rest of the matrix. In addition, sincew[n] is a window,
w[n] = 0 for n =2 f0; 1; : : : ; N � 1g. So we must compute, for
m = 0; 1; : : : ;M � 1,��hgm; rkiW ��
hgm;gmiW

=
jg�mWrkj

g�mWgm

=

��PN�1

n=0

�[m]e�j2�

m

M
nw[n]rk[n]

��PN�1

n=0

�[m]e�j2�

m

M
nw[n]
[m]ej2�

m

M
n

=

[m]

��PN�1

n=0
w[n]rk[n]e

�j2� m
M
n
��


[m]2
PN�1

n=0
w[n]

=

��PM�1

n=0
w[n]rk[n]e

�j2� m
M
n
��


[m]
PM�1

n=0
w[n]

(7)

=

��Rwk �mM ���

[m]W

�
0
M

�
and find its maximum to find thekth index,mk. Then thekth

correlation is given as

�k =
Rwk

�
mk
M

�

[mk]W

�
0
M

� =
ake

j�k


[mk]W
�
0
M

� (8)

whereak and �k are the magnitude and phase ofRwk [mk=M ]
respectively. The numerator of equation (7) is the magnitude of
the windowedM point DFT of thekth residual: Rwk [m=M ].
The denominator modifies each DFT coefficient by
[m], the
mth psychoacoustic weighting factor, and a constant,

P
n
w[n],

which can be ignored when finding the maximum correlation co-
efficient. Therefore the dictionary weighting factors cause an in-
verse amount of importance to be placed on the dictionary ele-

ments. If the weighting sequence,
, is the psychoacoustic mask-
ing threshold ofxl, as found using the psychoacoustic model de-
scribed in [8], equation (7) gives, fork = 0, the so-called signal-
to-mask ratio for the input signal. Signal-to-mask ratio compo-
nents less than1 are perceptually irrelevant, while the maximum
of the signal-to-mask ratio is the psychoacoustically most signif-
icant spectral element of the signal (although the accuracy of the
model in [8] is debatable). Assuming the psychoacoustic model
in [8] is least somewhat accurate and choosing
 as the masking
threshold ofxl, the weighted matching pursuit will iteratively find
the perceptually most significant spectral component in each resid-
ual as compared to the masking ability ofxl. Possible choices for

 is unlimited (e.g., one possible choice is absolute threshold of
hearing), although most choices will not carry the same percep-
tual significance as the masking threshold of the input. The use
of a weighted inner product with the special choice ofW as a
windowing operation is also important not only because window-
ing is one of the operations required for computing the masking
threshold, but because without windowing the algorithm would be
effectively searching a rectangularly windowed spectrum for the
best weighted correlation which could cause problems because of
the poor side-lobe performance of such a window.

Reconstruction for the frame is:

x̂l[n] =

K�1X
k=0

�kgmk [n] + ��kg
�

mk
[n]

=

K�1X
k=0

2ak

W
�
0
M

� cos h2�mk

M
n+ �k

i
(9)

Using equation (9), instead of storing�k andmk and using a dic-
tionary that contains the psychoacoustic weighting factors, we can
store the parameter triplet ofamplitude, frequencyandphaseas:

fAk = 2ak=W [0=M ] ; fk = mk=M; �k = �kg (10)

and use a separate reconstruction dictionary that does not contain
the psychoacoustic weighting factors,~gm[n] = ej2�

m

M
n; n =

0; 1; : : : ; N � 1; m = 0; 1; : : : ;M � 1. Using the parameters
in (10) and the reconstruction dictionary~gm directly gives equa-
tion (9). Because the reconstruction dictionary is fixed, there is
no overhead associated with storing the psychoacoustic weighting
factors, which may vary frame-by-frame or, if desired, during the
pursuit. This is important for compression applications.

The matching pursuit computational burden is further reduced
by updating the correlations directly at each iteration. Similar to
[4], the correlations can be updated as

hgm; rk+1i

hgm; gmi
=
hgm; rki � �k hgm; gmki � (�k hgm; gmk i)

�

hgm; gmi
(11)

for all m. Thus for any application of matching pursuits only one
set ofM correlations need be computed at the start and the follow-
ing correlations for subsequent residual signals are updated itera-
tively. Because of the choice of dictionary elements, equation (11)
has an interpretation entirely in terms of the DFT. It can be shown
that (11) is equivalent to, for allm:

Rwk
�
m
M

�
� Ak

2

�
ej�kW

�
m�mk
M

�
+ e�j�kW

�
m+mk
M

��

[m]W

�
0
M

�
which shows the correlations for the next iteration are found by
subtracting two frequency shifted window transforms from the



DFT of the last stage residual, then dividing the spectrum by the
perceptual weighting sequence. Therefore the entirelth frame
matching pursuit can be performed in the DFT domain as follows,
assumingM is a power of2 andm = 0; 1; : : : ;M � 1 (although
using symmetry of the DFT allows usingm = 0; 1; : : : ;M=2):

1. StoreW [m=M ], theM point FFT of the window. Setr0 =
xl. Compute theM point FFT ofr0[n]w[n], the current
windowed residual transformRw0 [m=M ].

2. ComputeRwk [m=M ] =
[m], the current windowed resid-
ual transform divided by dictionary weighting elements and
find the absolute maximum of the resulting set. This gives
the current sinusoidal parameters,fAk; fk; �kg, as defined
in (10).

3. If suitable stopping criterion is met (as discussed below),
exit; otherwise compute,Rwk+1[m=M], the next stage win-
dowed residual transform as:

Rwk [mM ]�
Ak
2

�
ej�kW

�
m�m

k

M

�
� e�j�kW

�
m+m

k

M

��

and let this next stage residual window transform be the
current stage residual transform and return to step 2.

Although the algorithm could continue until the residual signal
converges to zero, there are much better stopping criteria. One
possibility is when residual falls below the psychoacoustic mask-
ing threshold ofxl (e.g., whenj�kj < 1). With this criterion,
although the residual could be very large in a mean-square sense,
the reconstruction is perceptually identical to the original. Another
possibility is to stop the pursuit afterK iterations, which gives the
reconstruction with theK perceptually most important sinusoids.
Alternatively, the proposed sinusoidal model seamlessly integrates
with multi-part models such as sines+noise [2] or sines+transients
+noise [5]. When used with multi-part models the stopping crite-
rion is when the residual no longer contains components that cor-
relate well with sinusoids (i.e., transients and/or noise).

4. EXAMPLE

We ran the algorithm on a piece of rock music sampled atfs =
32KHz shown in figure 1(a). The input was split into blocks of
N = 1024 samples with an analysis stride ofp = 800 samples.
The dictionary size wasM = 8192. The weighting matrixW
performed the equivalent of a1024 point Hamming window and

 for each block was found as the psychoacoustic masking thresh-
old. The perceptually weighted matching pursuit continued until
the residual fell below the masking threshold of the input signal for
each block. The reconstructed signal shown in figure 1(b) required
on averageK = 180 sinusoidal parameters per frame. Although
the error shown in figure 1(c) between the original and the recon-
struction is quite large, the original and the reconstructed signals
are perceptually identical (as judged by informal listening tests).

5. CONCLUSION

By using extensions to the matching pursuits algorithm, a method
for sinusoidal modeling that iteratively extracts the perceptually
most significant sinusoids in a signal was presented. This formu-
lation, which can be integrated into multi-part signal models, is
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Figure 1: (a) Input signal (b) Reconstructed signal (c) Error signal

beneficial to many sinusoidal modeling applications, but is par-
ticularly well suited for scalable compression because the recon-
structed signal can be perceptually identical to the original and be-
cause the sinusoidal components are ordered in terms of perceptual
significance.
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