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2 Université de Marne-la-Vall´e, UF SPI 2, Rue de la Butte Verte, 93166 Noisy-le-Grand, France

ABSTRACT
Recent results have shown that blind channel estimators,
which are robust to the location of channel zeros and chan-
nel order overestimation errors, can be derived for commu-
nication channels equipped with Transmitted Induced Cy-
clostationarity (TIC) precoders. This paper addresses the
problem of joint estimation of the unknown InterSymbol
Interference (ISI) and carrier frequency offset using TIC-
based set-ups. First, it is shown that the second-order cyclic
statistics of the output allow recovery of the channel taps
under a scaling factor ambiguity dependent on the unknown
carrier offset frequency. Next, a carrier frequency estimator
is proposed, and its asymptotic (large sample) performance
is analyzed. It is shown that the asymptotic performance
of the frequency estimator improves in the presence of a
channel equalizer for high SNR’s. Finally, numerical simu-
lations are presented to colloborate the performance of pro-
posed algorithms.

1. INTRODUCTION
It has been shown in [2], [8], that blind identification of FIR
communication channels can be achieved from knowledge
of the second-order statistics of the received data, without
imposing any restriction on the channel zeros, color of ad-
ditive noise, and channel order over-estimation errors. The
underlying channel identification approach relies on the out-
put second order cyclostationary (CS) statistics, induced by
precoding the input symbol stream with a periodically time-
varying precoder, referred to, as a Transmitter Induced Cy-
clostationarity (TIC) precoder.

Up to present, only a limited number of approaches have
been proposed for blind joint estimation of the channel and
the carrier frequency offset (FO). In general, these approaches
rely on the iterative minimization of certain nonlinear crite-
ria. In [5], [7], the unknown channel is first equalized using
a Constant Modulus Algorithm (CMA), and then the carrier
offset is tracked from the equalized output. However, in the
presence of residual ISI the performance of these frequency
tracking algorithms may degrade. In the present paper, esti-
mation of the channel is obtained in a closed-form without
minimizing a nonlinear criterion; hence, the potential local
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Figure 1: Communication Channel with Frequency Offset

minima or loss of convergence associated with [5], [7], in
the presence of noise, are avoided, and consistent estimates
of the FO are guaranteed even in presence of residual ISI.

The equivalentbasebanddiscrete-time representation of
a communication channel with carrier frequency offset is
represented in Fig. 1, where the TIC-precoder is imple-
mented by modulating the i.i.d. input symbol streams(n)
with a strictly periodic and deterministic sequencef(n) =
f(n +P ), 8n. The resulting sequencew(n) := f(n) s(n)
propagates through the unknown channelh(n), whose out-
put is modulated byexp (j�en), with �e standing for carrier
frequency offset. The input-output relation of this commu-
nication set-up is given by

x(n) = y(n)+v(n) = ej�en
LX
l=0

h(l)w(n�l)+v(n) ; (1)

wherev(n) stands for additive stationary noise, indepen-
dently distributed ofs(n). By defining the time-varying
correlation ofw(n) at timen and lag� as cww(n; �) :=
Ew�(n)w(n + �), it follows that cww(n; �) = cww(n +
P ; �) = jf(n)j2�2s �(�), where�2s := Ejs(n)j2. Thus,
w(n) exhibits CS-statistics of periodP . An approach for
blind joint estimation of the unknown channelh := [h(0)
: : : h(L)]T and the FO �e has been proposed in [9]. The
main goal of the present paper is to analyze the asymptotic
performance of the FO estimator proposed in [9]. Next, a
brief overview on the channel and FO estimators from [9]
are presented.

2. BLIND CHANNEL ESTIMATION
Note that the FO-model (1) can be re-written in the equiv-
alent form of a channel without FO, but with an additional
modulation superimposed on the input symbol streams(n)

x(n) =
LX
l=0

g(l)u(n� l) + v(n) ; (2)



whereg(l) := h(l) exp (j�el), andu(n) :=w(n) exp (j�en)
= f(n) exp (j�en)s(n). Sincecuu(n; �) = cww(n; �),
it follows that u(n) exhibits CS-statistics, too. From (1),
the output time-varying correlation is given bycxx(n; �) :=
Ex�(n)x(n+ �) = cxx(n+ P ; �), and is periodic. Hence,
it admits a Fourier Series (FS) decomposition, whose coef-
ficients are the cyclic correlations. The cyclic correlation
at cyclek and lag� is given byCxx(k; �):=(1=P )

PP�1
n=0

cxx(n; �) exp (�j2�kn=P ) = �2s F2(k) exp (j�e�)
P

l

g�(l) g(l + �) exp (�j2�kl=P )+ �2v�(k), whereF2(k) :=
(1=P )

PP�1
n=0 jf(n)j

2 exp (�j2� kn=P ), �2s :=E js(n)j2,
and�2v := Ejv (n)j2. Considering the cyclic spectrumSxx
(k; z) :=

P
� Cxx(k; �)z

�� at a cycle frequencyk 6= 0, we
obtain fork = 1; : : : ; P � 1

Sxx(k; z) = �2sF2(k)G(z)G
�(e�j2�k=P =z�); (3)

whereG(z) :=
PL

l=0 g(l)z
�L = H(z exp (j�e)), with

H(z) :=
PL

l=0 h(l)z
�L. It can be shown that the trans-

fer functionG(z) can be extracted as the gcd of the family
of cyclic spectraSxx(k; z), k = 1; : : : ; P �1, provided that
the period off(n) satisfiesP > L+1 [2], [8]. Henceforth,
we choose the periodP so thatP > L + 1 is satisfied.
Since the transfer functionG(z) can be estimated without
any knowledge on FO�e, (2) can be de-convolved assum-
ing the perfect inverseG�1(z). We have
x1(n) := G�1(z)x(n) = ej�enf(n)s(n) +G�1(z)v(n) :

(4)Since the estimation of the true channelh(n) from g(n) re-
quires knowledge of FO �e, we concentrate next on the
frequency offset determination problem.

3. ESTIMATION OF FREQUENCY OFFSET
For real-valued input constellations (e.g., BPSK, PAM) the
second orderconjugatecyclic statistics ofx(n) allow the
recovery of�e [4, 11]. Consider thats(n) is a BPSK se-
quence, and the conjugate time-varying correlation~cxx(n; �)
:=Ex(n)x(n+�) = �2s exp (j�e(2n+ �))

P
l h(l)h(l+�)

f2(n� l) +~cvv(�), where~cvv(�) := E v(n) v (n +�). Be-
ing periodically time-varying, the generalized Fourier Se-
ries coefficient of~cxx (n; �), termed the conjugate cyclic
correlation, is given by [c.f. (2)]

~Cxx(�; �) := lim
N!1

1

N

N�1X
n=0

~cxx(n; � )e
�j�n=�2s ~F2(�� 2�e)

�
X
l

h(l)h(l + �)e�j(��2�e)l+ ~cvv(�)�(�); (5)

where ~F2(�) := limN!1(1=N)
PN�1

n=0 f2(n) exp (�j

�n). Sincef(n) is periodic, ~F2(�) consists of Kronecker
deltas located at the harmonics2�k=P , with k being an in-
teger; i.e.,~F2(�) =

P
k
~F2(k) �(� � 2�k=P ). Due to (5),

~Cxx(�; �) consists also of Kronecker deltas located at fre-
quencies2�e + 2�k=P , wherek is an integer. An estimate
of �e can be obtained from the location of thekth Kronecker
delta!k := 2�e + 2�k=P

�̂e :=
1

2
(arg max 2�k

P
<�<

2�(k+1)
P

j ~Cxx(�; �)j �
2�k

P
): (6)

The condition0 � 2�e < 2�=P , i.e.,0 � !eTs < �=P ,
is adopted in order to ensure unique estimation of the offset
�e. By choosing� = 0 in (6), the resulting statistics takes
the form of the Discrete Fourier Transform (DFT)

�̂e :=
1

2
(arg max 2�k

P
<�<

2�(k+1)
P

����� 1N
N�1X
n=0

x
2(n)e�j�n

������2�k

P
):

(7)
For QAM input constellations that satisfy the moment

conditionsEw2(n) = 0, Ew3(n) = 0, andEw4(n) 6=
0, the frequency offset is obtained from the fourth order
cyclic statistics of the output. QAM(4)� QAM(32) con-
stellations are typical input sequences for which these mo-
ment conditions hold. Defining the 4th-order time-varying
correlation~c4;xx(n; �) := E x2(n)x2(n + �), we deduce
that~c4;xx(n; �) = Es4(n) exp (j(4�en+ 2�e�))

P
l h

2(l)
h2(l+ �) f4(n� l) + ~c4;vv(n; �). The generalized Fourier
Series coefficient of~c4;xx(n; �), ~C4;xx(�; �) := limN!1

(1=N)
PN�1

n=0 ~c4;xx(n; �) exp (�j�n) is expressed as:
~C4;xx(�; �) = Es4(n) ~F4(� � 4�e)

X
l

h2(l)h2(l + �)

�e�j(��4�e)lej2�e�+ �(�)Ev2(n)v2(n+ �); (8)

with ~F4(�):= limN!1(1=N)
PN�1

n=0 f
4(n) exp (�j � n).

Since ~F4(�) consists of a sequence of Kronecker deltas lo-
cated at harmonics2�k=P , ~C4;xx(�; �) consists also of a
sequence of Kronecker deltas located at4�e + 2�k=P , k =
0; : : : ; P � 1. Similar to (7), we deduce the estimator

�̂e:=
1

4
(arg max 2�k

P
<�<

2�(k+1)
P

�����1N
N�1X
n=0

x4(n)e�j�n

������ 2�k

P
) (9)

We note that the condition0 � 4�e < 2�=P is necessary
for unique estimation of�e from (9).

4. ASYMPTOTIC PERFORMANCE
Since the asymptotic performance of estimators (7) and (9)
can be established in a similar way, we next analyze the
performance of (7). We assume that inputs(n) is BPSK
(�1), and that the zero-mean additive noisev(n) satisfies
the mixing conditionX

n1

� � �
X
nK

jcv���v(n1; : : : ; nK)j <1; K = 1; 2; : : : (10)

wherecv���v(n1; : : : ; nK) := cumfv(n + n1); : : : ; v(n +
nL); v(n)g stands for(K + 1)st-order cumulant ofv(n).
The mixing condition (10) refers to the absolute summa-
bility of cumulants of any orders, and is a reasonable as-
sumption in practice, since it is satisfied by all time series
of weak memory, i.e., an asymptotically vanishing span of
dependence on time series samples) [1, pp. 8, 25-27]. It is
easy to check that the DFT-estimator (7) is equivalent to the
nonlinear least-squares estimator (NLS) [6], [11]

�̂ :=arg min�JNLS(�) ; (11)

JNLS(�) :=
1

2

N�1X
n=0

jx2(n)�

P�1X
k=0

�ke
j(!kn+�k)j2; (12)



where� := [�0 �0 !0 � � ��P�1 �P�1 !P�1]
T . From (1),

we deduce that forn = 0; : : : ; N � 1

x2(n) = ej2�en
LX
l=0

h2(l)f2(n� l) + �(n) ; (13)

�(n) :=2ej2�en
X

0�l1<l2�L

h(l1)h(l2)w(n � l1)w(n� l2)

+ 2ej�env(n)

LX
l=0

h(l)w(n� l) + v2(n): (14)

Substitutingf2(n)=
PP�1

k=0 F2(k) exp (j2�kn=P ) into (13),
we obtain

x2(n) =
P�1X
k=0

�ke
j!kn + �(n) ; (15)

�k :=F2(k)

"
LX
l=0

h2(l)e�j2�kl=P

#
; (16)

!k :=
2�k

P
+ 2�e : (17)

Thus, according to (15), the original frequency offset prob-
lem resumes to the estimation of an harmonic embedded
in cyclostationary noise�(n). It is of interest to know if
it can be ensured that�k 6= 0. Due to (16),�k = 0 iff
F2(k) = 0 or H2(k) := H2(exp (j2�k=P )) = 0, where
H2(z) :=

PL
l=0 h2(l)z�l. It can be shown that for the

set of optimal precoders developed in [3],F2(k) 6= 0. On
the other hand,H2(k) = 0 implies thatexp (�j2�k=P )
is a zero ofH2(z). In practice, the conditionH2(k) =
0, for 8 k = 0; : : : ; P � 1, is less likely to hold. How-
ever, by choosingP = L + 1, from the Parserval identityPL

l=0 jH2(l)j
2 =

PL
l=0 jh(l)j

4, we conclude that there ex-
istsk, such thatH2(k) 6= 0. Thus, the estimation of offset
�e is always possible, since there is at least one non-zero
spectral line in the spectrum ofx2(n).

The asymptotic performance of the frequency offset es-
timator (11) is sketched in the Appendix. From (30), the
asymptotic variance of FO-estimator (11) is given by

lim
N!1

N3(!̂k � !k)
2 =

6S��(0; e
j!k)

�2k
=

6

SNRk
; (18)

whereSNRk := �2k=S��(0; exp (j!k)) represents the SNR
corresponding to thekth harmonic!k := 2�k=P+2�e. We
note that iff(n) = 1, for 8 n, eq. (18) reduces to the known
formula from the stationary case [6], [10, (32)-(40)], since
the cyclic spectrumS��(0; exp (j!)) becomes equal to the
stationary spectrumS��(exp (j!)).

FO �e can also be estimated by applying (7) on the
equalized outputx1(n) (see (4)). It is of interest to compare
the asymptotic performance of this new estimator with (18).
Similar to (15), we have the representation

x21(n) =

P�1X
k=0

�ke
j!kn + �(n) ; (19)

where�k := F2(k) and�(n) := (G�1(z)v(n))2 +2ej�en

w(n) G�1(z)v(n). The asymptotic performance of the FO-
estimator associated to the equalized outputx1(n) is given
by

lim
N!1

N3(!̂k � !k)
2 =

6S��(0; e
j!k )

�2k
; (20)

whereS��(0; ej!k ) stands for the cyclic spectrum corre-
sponding to�(n) at zero cycle and frequency!k. We show
next that for high SNR’s, the asymptotic variance (20) is
smaller than (18). For this it sufficies to note thatlim�v!0

S��(0; e
j!k) 6= 0, andlim�v!0 S��(0; e

j!k ) = 0.
However, a side effect ofG�1(z) is to amplify the power

of additive noisev(n) at the output of equalizer. Suppose
thatv(n) is white noise. Consider that channelh has unit
norm,jjhjj2 = 1, and define the Signal-to-Noise RatioSNR
:= 10log �2s=�

2
v = 10log �2y=�

2
v . Denote byg and g1

the impulse response vectors forG(z) andG�1(z), respec-
tively. Defining the scalar product(g;g) := 1

2�

R 2�
0

G(ej!)
G�(ej!)d!, from Schwartz’s inequality(g�1 ;g

�
1) � (g;g�1)

=(g;g), andG(z)G�1(z) = 1, (g;g�1) = 1, it follows that
(g�1 ;g

�
1) � 1. Sincev(n) is white,�2v(g1;g1) is the power

of G�1(z)v(n), and hence the amplification of the noise
at the output of equalizerG�1(z). Simulation experiments
show that at low SNR’s, the variance in (20) is larger than
(18). In the next section, we perform several simulation ex-
periments in order to illustrate this claim.

5. SIMULATION RESULTS
Throughout the simulations, we have considered the GSM
channel with the baseband channel impulse responseh =
[0:53+ 0:07i,�0:24� 0:23i,�0:54� 0:32i, 0:11+ 0:44i,
�0:036 � 0:099i]T , frequency offset�e = �=30, periodic
precoderff(n)gPn=1 := [0:76 ; 0:76 ; 0:76 ; 0:76 ; 1:74],
and AWGNv(n). We have plotted the standard deviation

(10log
q
E(�̂e � �e)2) of the frequency estimators (7) and

(9) versus the Signal-to-Noise Ratio (SNR), defined, at the
input of equalizer, as:SNR := 10log(Ejy(n)j2=Ejv(n)j2)
= 10log(Ejs(n)j2=Ejv(n)j2), (jjhjj2 = 1). In Fig. 2-a,
input s(n) is BPSK and the frequency offset is estimated
from the location of the first spectral line (k = 0) in (7),
for two different scenarios: in the absence (dashed line) and
presence of channel equalizerG(z) (’+�’ line). For both
simulationsN = 100 samples andMC = 200 Monte-Carlo
runs have been performed. The asymptotic theoretical val-
ues (20) are represented in Fig. 2-a by the ‘o�’ line. We
note that for moderate to high range ofSNR = 10 � 40
dB, the performance of estimator (7), in the presence of a
channel equalizer, improves with respect to the case when
no equalizer is used. But, for small SNR’s (SNR = 0� 10
dB), the performance of estimator (7), in the presence of a
channel equalizer, deteriorates with respect to the case when
no equalizer is used. We note that the same conclusion turns
out from the experimental plots presented in Fig. 2-b for a
QPSK input, with the estimator (9) implemented fork = 0,



N = 200 samples, and MC= 200 Monte-Carlo runs. We
note also that the experimental asymptotic values of the fre-
quency estimator (7), are quite well predicted by the the-
oretical values for a medium to high range of SNR’s and
N = 100 samples (Fig. 2-a).

APPENDIX

It is convenient to adopt the notations from [10]:

y(n; �) :=
P�1X
k=0

�ke
j(!kn+�k) ; (21)

y(�) := [y(0; �) � � � y(N � 1; �)]T ; (22)

x := [x2(0) � � �x2(N � 1)]T ; (23)

� := [�(0) � � � �(N � 1)]T ; (24)

a(n) := @y(n; �)=@�, andA := [aT (0) : : : aT (N � 1)]T .
We re-write (15) as:x = y(�)+ �. In order to find the large
sample performance of̂�, we make use of a Taylor series
expansion of the gradient@a=@�(�̂) around�

@a

@�
(�̂) �=

@a

@�
(�) +

@2a(�)

@�2
(�̂ � �) : (25)

Since@a=@�(�̂) = 0, from (25) we obtain

�̂ � � �= �

�
@2a

@�2
(�)

��1
@a

@�
(�) : (26)

Since@a
@� = Re(�@y�(�)

@� �), @
2
a

@�2 = Re(YN ), whereYN :=

Re(@y
�(�)
� � @y(�)@�T �

PN�1
n=0

@2y�(�;n)
@�2 �(n)), (26) is equiva-

lent to
�̂ � � = �Y�1N Re

�
@y�(�)

@�
� �

�
: (27)

Define the3P � 3P block diagonal matrixKN := diag
([N1=2 N1=2 N3=2 ; : : : ; N1=2 N1=2 N3=2]). From (27),
we obtain

KN (�̂��)=�(K�1
N YNK

�1
N )�1

�
K�1
N Re

�
@y�(�)

@�
� �

��
:

(28)
Sincev(n) satisfies (10), it can be shown that�(n) satis-
fies the mixing condition (10), too. As a consequence of
mixing assumption on�(n), it follows that the second term

in K�1
N YNK

�1
N (i.e., K�1

N

PN�1
n=0

@2y�(�;n)
@�2 �(n)K�1

N )) is
asymptotically negligible asN ! 1. Direct computations
in (28) lead to

lim
N!1

KN (�̂ � �)(�̂ � �)TKN = lim
N!1

�
K
�1
N Re(A�A)K�1N

�
�1

�
�
K
�1
N Re(A��)Re(A��)TK�1N

��
K
�1
N Re(A�A)K�1N

�
�1
:

(29)
Using the resultlimN!1(1=Nk+1)

PN�1
n=0 nkej(!n+�) =

ej� �(!), all the factors in (29) can be computed explicitly.
We obtain the result thatlimN!1KN (�̂� �)(�̂ � �)TKN

is a block diagonal matrix with its(k + 1; k + 1) diagonal
block given by

1

2
S��(0; e

j!k )

2
4 1 0 0

0 4
�2
k

� 6
�2
k

0 � 6
�2
k

12
�2
k

3
5 ; (30)

whereS��(0; ej!k) stands for the cyclic spectrum of�(n)
corresponding to the cycle0 and evaluated at frequency!k.
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Figure 2: Std. Deviation of FO-Estimator: a) BPSK input
b) QPSK input


