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ABSTRACT f(n) §0en v(n)
Recent results have shown that blind channel estimators,
which are robust to the location of channel zeros and chan- £ CICONIN R vn) gy o)

nel order overestimation errors, can be derived for commu-
nication channels equipped with Transmitted Induced Cy- o .
clostationarity (TIC) precoders. This paper addresses the Figure 1: Communication Channel with Frequency Offset
problem of joint estimation of the unknown InterSymbol
Interference (ISI). anq parrier frequency offset using TIC-. minima or loss of convergence associated with [5], [7], in
based set-ups. First, itis shown that the second-order CycliGne presence of noise, are avoided, and consistent estimates
statistics of the output allow recovery of the channel taps 4t the FO are guaranteed even in presence of residual ISI.
under a scaling factor ambiguity dependent on the unknown 1o equivalenbasebandiiscrete-time representation of
carrier offset frequency. Next, a carrier frequency estimator 5 -ommunication channel with carrier frequency offset is
is proposed, and its asymptotic (large sample) performancerepresented in Fig. 1, where the TIC-precoder is imple-
is analyzed. It is shown that the asymptotic performance panted by modulating the i.i.d. input symbol streaf)
of the frequency estimator improves in the presence of a i, 4 strictly periodic and deterministic sequeni@) =
channel equalizer for high SNR’s. Finally, numerical simu- f(n +P), Yn. The resulting sequenae(n) := f(n) s(n)
lations are presented to colloborate the performance of Propropagates through the unknown chaniel), whose out-
posed algorithms. putis modulated byxp (jé.n), with §, standing for carrier

1. INTRODUCTION frequency offset. The input-output relation of this commu-
It has been shown in [2], [8], that blind identification of FIR nication set-up is given by
communication channels can be achieved from knowledge .
of the second-order statistics of the received data, without *(") = ¥(n)+v(n) = 7Y hDwn=h+o(n) , 1)
imposing any restriction on the channel zeros, color of ad- wherev(n) stands for additive stationary noise, indepen-
ditive noise, and channel order over-estimation errors. Thedently distributed ofs(n). By defining the time-varying
underlying channel identification approach relies on the out- correlation ofw(n) at timen and lagr ascy.,(n;7) =
put second order cyclostationary (CS) statistics, induced by Ew* (n)w(n + 1), it follows that cy.w(n;7) = cww(n +
precoding the input symbol stream with a periodically time- P;7) = |f(n)|?02 6(7), whereo? := El|s(n)|>. Thus,
varying precoder, referred to, as a Transmitter Induced Cy-w(n) exhibits CS-statistics of perioB. An approach for
clostationarity (TIC) precoder. blind joint estimation of the unknown chanriel:= [h(0)

Up to present, only a limited number of approaches have. .. 4(L)]T and the FO 6, has been proposed in [9]. The
been proposed for blind joint estimation of the channel and main goal of the present paper is to analyze the asymptotic
the carrier frequency offset (FO). In general, these approachggrformance of the FO estimator proposed in [9]. Next, a
rely on the iterative minimization of certain nonlinear crite- pbrief overview on the channel and FO estimators from [9]
ria. In [5], [7], the unknown channel is first equalized using are presented.

a Constant Modulus Algorithm (CMA), and then the carrier 2. BLIND CHANNEL ESTIMATION

offset is tracked from the equalized output. However, in the Note that the FO-model (1) can be re-written in the equiv-
presence of residual ISI the performance of these frequencyalent form of a channel without FO, but with an additional
tracking algorithms may degrade. In the present paper, esti-nodulation superimposed on the input symbol stregm)
mation of the channel is obtained in a closed-form without L

minimizing a nonlinear criterion; hence, the potential local z(n) = ;g(l)“(” —b) +o(n), @




whereg(l) := h(l) exp (j8.l), andu(n) := w(n) exp (jf.n)
= f(n)exp (jbe.n)s(n). Sincecy,(n;7) = cww(n;7),
it follows thatu(n) exhibits CS-statistics, too. From (1),
the output time-varying correlation is given by, (n; 1) :=
Ez*(n)x(n + 7) = ¢z (n + P; ), and is periodic. Hence,

1
it admits a Fourier Series (FS) decomposition, whose coef-f = §(arg MAXoxk o 220t

ficients are the cyclic correlations. The cyclic correlat|on
at cyclek and lagr is given byC,, (k; 7):=(1/P) Zn o
Cza(n;T) exp (—j2mkn/P) = o2 Fy(k) exp (j0.7)d,

g* (1) g(l + 7) exp (—j2nkl/ P)+ 025(k), whereFy (k) :
(1/P) 2020 [F () exp (—j2m kn/P), 0% := B [s(n) P,
ando? := E|v (n)|*. Considering the cyclic spectruf,
(k;z) == Cuu(k; )27 atacycle frequency # 0, we
obtainfork =1,...,P -1

Sea(ks;2) = 0, Fa(K)G(2)G™ (7™ P 127),  (3)
whereG(z) = Yr ,g(l)2 % = H(zexp (j6.)), with

H(z) :== Z,LZO h(l)z—E. It can be shown that the trans-
fer functionG(z) can be extracted as the gcd of the family
of cyclic spectraS,,.(k; 2), k = 1,..., P — 1, provided that
the period off (n) satisfiesP > L + 1 [2], [8]. Henceforth,
we choose the perio@® so thatP > L + 1 is satisfied.
Since the transfer functiof(z) can be estimated without
any knowledge on FO#§,, (2) can be de-convolved assum-
ing the perfect invers&—!(z). We have
z1(n) = G (2)z(n) = " f(n)s(n) + G (2)v(n) .

Since the estimation of the true chanhéh) from g(n F@
quires knowledge of FO 6., we concentrate next on the
frequency offset determination problem.

3. ESTIMATION OF FREQUENCY OFFSET

The condition0 < 26, < 27/P,i.e.,0 < w.Ts; < 7/P,

is adopted in order to ensure unique estimation of the offset
6.. By choosingr = 0 in (6), the resulting statistics takes
the form of the Discrete Fourier Transform (DFT)

N-1
~ % ZOxZ(n)ejan‘_?).

-

For QAM input constellations that satisfy the m(()r%ent
conditonsEw?(n) = 0, Ew3(n) = 0, and Ew*(n) #
0, the frequency offset is obtained from the fourth order
cyclic statistics of the output. QAM(4} QAM(32) con-
stellations are typical input sequences for which these mo-
ment conditions hold. Defining the 4th-order time-varying
correlationéy . (n;7) := E z?(n)z?(n + 1), we deduce
thatéy oo (n; 7) = Es*(n) exp (j(40en + 26.7)) >, h(1)
h2(l+7) f4(n —1) + é4,4»(n; 7). The generalized Fourier
Series coefficient ofy ., (1;7), Caze(e;T) := Imy_00
1/N)y SN e ”(n ) exp (—jan) is expressed as:
Cue(osT) = Es*(n)Fy(a — 408)2 AR (14 7)

l

x e I(@=40)16020- T §(0)) Ev? (n)v? (8)

with £y (a):=limx_, o (1/N)N_ ' f4(n) exp (=5 a n).
SinceF) () consists of a sequence of Kronecker deltas lo-
cated at harmonic3rk/P, C4 5. (a; T) consists also of a

sequence of Kronecker deltas locatedét+ 27k/P, k =
0,...,P — 1. Similar to (7), we deduce the estimator

(n+7),

N-1
. 1 1 4 ; 2mk
R —jan| _
Oc:= (arg MAX grk o o 20HD) NE z*(n)e - O
n=0

For real-valued input constellations (e.g., BPSK, PAM) the \We note that the conditiod < 4¢. < 27 /P is necessary

second ordeconjugatecyclic statistics ofz(n) allow the
recovery off, [4, 11]. Consider that(n) is a BPSK se-
guence, and the conjugate time-varying correladigrin; 7)
= Ez(n)z(n+7) =02 exp (j.(2n + 7)) >, h()h(l+T)
F2(n—1) +¢uy (1), whereé,, (1) := Ev(n) v (n +7). Be-

ing periodically time-varying, the generalized Fourier Se-

ries coefficient of¢,, (n; 7), termed the conjugate cyclic

correlation, is given by [c.f. (2)]
N-1

Cou(a7) := ngnoo—

I By (o — 26,)

Czz(M; T)Eil

n=0

D Al + r)e 7 )46, (1)d(a),  (5)
4

where Fy(a) = limy 00 (1/N) SN £2(n) exp (—j
an). Sincef(n) is periodic,F;(a) consists of Kronecker
deltas located at the harmonsk /P, with k£ being an in-
teger; i.e.Fy(a) = 3", Fa(k) 6(a — 27k/P). Due to (5),
Cox(a;
quegcieszee + 27k /P, wherek is an integer. An estimate
of . can be obtained from the location of thiln Kronecker

deltawy, := 26, + 27k/P
1 27k
ee = (arg maX21rk< <2ﬂ'(k+1) |Cacz(a T)| P )

(6)

[\

7) consists also of Kronecker deltas located at fre-

for unique estimation of, from (9).

4. ASYMPTOTIC PERFORMANCE
Since the asymptotic performance of estimators (7) and (9)
can be established in a similar way, we next analyze the
performance of (7). We assume that inpt) is BPSK
(£1), and that the zero-mean additive noige) satisfies
the mixing condition

ZZ leyw(n1, ... ,nK)| <oco, K=1,2,... (10)
ni nK
wherecy...,(n1, . ..,ng) = cum{v(n + ny),...,v(n +

nr),v(n)} stands for(K + 1)st-order cumulant of(n).

The mixing condition (10) refers to the absolute summa-
bility of cumulants of any orders, and is a reasonable as-
sumption in practice, since it is satisfied by all time series
of weak memory, i.e., an asymptotically vanishing span of
dependence on time series samples) [1, pp. 8, 25-27]. Itis
easy to check that the DFT-estimator (7) is equivalent to the
nonlinear least-squares estimator (NLS) [6], [11]

é = arg ming JNLS (9) y

P-1
Z [ (n

Z akej(ww-&-(bk) |27 (12)
k=0

(11)

JInrs (0



wheref := [ag ¢ wo - -ap_1 ¢p_1 wp 1]T. From (1),  whereg; := Fy(k) andu(n) = (G~1(2)v(n))? +2ei%"
we deduce that fonz =0,...,N—-1 w(n) G~1(2)v(n). The asymptotic performance of the FO-
estimator associated to the equalized outpyt) is given
22 (n) = &2 th (n—1)4+¢n), (13) by .
65, (0; 74"

: . : )
N T

where S,,,,(0; e7“*) stands for the cyclic spectrum corre-
sponding tau(n) at zero cycle and frequency,. We show

J0en,, _ 02 next that for high SNR’s, the asymptotic variance (20) is
+ 2 Zh win —1) (n)- (14) smaller than (18). For this it sufficies to note thiat,, .o
See(0;€7%) £ 0, andlimy, 0 S, (0; €7<%) = 0.

_26]29 n Zh (I)h(l)w(n —l)w(n —12)
0<11<l2<L

Substitutingf? (n)= kP 01 Fy(k) exp (j2rkn/P) into (13), However, gside effectdf—!(z) isto ampli.fy the power
we obtain of additive noisev(n) at the output of equalizer. Suppose
iwonn thatv(n) is white noise. Consider that chandehas unit
= Z k€ +e(n), (15) norm,||h||2 = 1, and define the Signal-to-Noise Ra#id R

= 10log 02 /02 = 10log o} /o2. Denote byg and g;

L
the impulse response vectors f&fz) andG~'(z), respec-
o 2 —j2mkl/P ’
o 1= Fa (k) Zh (De ] ’ (16) tively. Defining the scalar produ¢g, g) := 5 02“ G(e?v)
ok =0 G* (e/*)dw, from Schwartz’s inequalityg}, gt) > (g,g?)
W= + 26, (17) /(g,8), andG(2)G1(z) = 1, (g,g}) = 1, it follows that

(g7,gr) > 1. Sincev(n) is white,o2(g1, g1) is the power
Thus, according to (15), the original frequency offset prob- of G~'(z)v(n), and hence the amplification of the noise

lem resumes to the estimation of an harmonic embeddedht the output of equalize% ' (z). Simulation experiments
in cyclostationary noise(n). It is of interest to know if ~ show that at low SNR's, the variance in (20) is larger than

it can be ensured thai, # 0. Due to (16),ay, = 0 iff (18). In the next section, we perform several simulation ex-
Fy(k) = 0 or Hy(k) := Ha(exp (j27k/P)) = 0, where periments in order to illustrate this claim.
Hy(z) := ZZL:() R2(1)z=t. It can be shown that for the 5. SIMULATION RESULTS

set of optimal precoders developed in [8)(k) # 0. On Throughout the simulations, we have considered the GSM
the other handH.(k) = 0 implies thatexp (—j2rk/P) channel with the baseband channel impulse resphnse

is & zero ofH>(z). In practice, the conditioH>(k) = [0.53 +0.07, —0.24 — 0.23i, —0.54 — 0.32i, 0.11 + 0.44i,
0,forvV k =0,...,P —1,is less likely to hold. How-  _(.036 — 0. 0991]T frequency offsed, = /30, periodic
ever, by choosmgP = L + 1, from the Parserval identity  precoder{f(n)}f_, := [0.76 ; 0.76 ; 0.76 ; 0.76 ; 1.74],

Yo [Ha(D? = Yoo Al )|4 we conclude that there ex-  and AWGNv(n ) “We have pIotted the standard deviation

ists k, such thatt, (k) # 0. Thus, the estimation of offset \/72
0. is always possible, since there is at least one non-zero(1010g E(f — 9.)*) of the frequency estimators (7) and

spectral line in the spectrum of (n) (9) versus the Signal-to-Noise Ratio (SNR), defined, at the
The asymptotic performance of the frequency offset es- TpUtIOf eguallze; ]a;SNR 2_ 10}110g(E_|y( n)] I/EF|'U( )2| )
timator (11) is sketched in the Appendix. From (30), the ;pt(t) O(g() it(gl)JS@ z|;11r)1(c7jl)t|hg fE!qﬂén;y lo)f.'fsent islge.stir-nae,ued
ic vari f FO-esti 11) is gi 5\
asymptotic variance of FO-estimator (11)is given by from the location of the first spectral liné (= 0) in (7),

lim N3(Gp — wi)? = 6See(0; €79%) _ 6 . (18) for two different scenarios: in the absence (dashed line) and
N=oo aj SNRy presence of channel equalizétz) ('+—' line). For both
whereSNRy, := a2 /S..(0; exp (jwy,)) represents the SNR simulationsV = 100 samples an®dIC = 200 Monte-Carlo
corresponding to theth harmoniauy, := 27k/P+26,. We runs have been performed. The asymptotic theoretical val-
note that iff(n) = 1, forV n, eq. (18) reduces to the known ues (20) are represented in Fig. 2-a by the“@ne. We
formula from the stationary case [6], [10, (32)-(40)], since Note that for moderate to high range$iWR = 10 + 40
the cyclic spectruns,. (0; exp (jw)) becomes equal to the  dB, the performance of estimator (7), in the presence of a
stationary spectrurfi. (exp (jw)). channel equalizer, improves with respect to the case when
FO 6, can also be estimated by applying (7) on the no equalizer is used. But, fqr small SNRS;NR =0-=10
equalized output, (n) (see (4)). Itis of interest to compare dB), the performance of estimator (7), in the presence of a
the asymptotic performance of this new estimator with (18). channel equalizer, deteriorates with respect to the case when

Similar to (15), we have the representation no equalizeris useq. We note that the same conclusion turns
P-1 . out from the experimental plots presented in Fig. 2-b for a
2n) = Bue’*" + pu(n) (19)  QPSK input, with the estimator (9) implemented fox 0,

k=0



N = 200 samples, and ME 200 Monte-Carlo runs. We

note also that the experimental asymptotic values of the fre-
guency estimator (7), are quite well predicted by the the-
oretical values for a medium to high range of SNR’s and

N =100 samples (Fig. 2-a).

APPENDIX
It is convenient to adopt the notations from [10]:
P—-1
y(n,0) = Z aped @renton) (21)
k=0
y(@) = [y(0,0)---y(N -1 9)]T (22)
x = [22(0)--2*(N - D)7 (23)
e = [e(0)-- ( -t (24)
a(n) := dy(n,0)/06, andA := [aT(0)...aT (N - 1)]T.

We re-write (15) asx = y(f) + €. In order to find the large
sample performance @, we make use of a Taylor series
expansion of the gradieta/06(#) aroundd

Oa  » Oa 0%a(h) -

Boy=20+ 220G g ()
Sinceda/d6(f) = 0, from (25) we obtain

f—0=— {&(9)} - @(9). (26)
062 00

Since22 = Re(— 2 [)¢), ‘90;‘ =Re(Yy), whereY y :=
Re( 2 (%) 40 o0 —Zf L% 0n) (), (26) is equiva-
fentto §-6=—vRe (2L ©) . 27)

00
Define the3P x 3P block diagonal matriXKy := diag
(INY/2 N2 N3/2 5 NY2 N2 N3/2]). From (27),

we obtain P
Ky (0—0)=—(Ky YyKG) ™ {K;ﬁie( yaa( ) e>:| :
28

Sincew(n) satisfies (10), it can be shown thdt) satis-

fies the mixing condition (10), too. As a consequence of

mixing assumption ol(n), it follows that the second term

in Kyt YAKy (e, Kyt SN 29 0K 1) is
asymptotlcally negllglbleasf — oo. Direct computations

in (28) lead to
NlimKN(é -0 -0)"Ky = A}imJKleRe(A*A)Kle]
x[K5'Re(A")Re(A")TKy' | [Ky' Re(A"A)KR'] ™"
(29)
Using the resultimy_, o, (1/N*11) SN pkei(wnto) =

-1

el? §(w), all the factors in (29) can be computed explicitly.

We obtain the result thaitm . Ky (6 — 6)( — 6)TK
is a block diagonal matrix with iték + 1,k + 1) diagonal
block given by

1 0 0
. 4
lse@erny| 0 & = | (30)
2 0 & 15

whereS,.(0;e/“*) stands for the cyclic spectrum efr)
corresponding to the cycleand evaluated at frequengy..
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Figure 2: Std. Deviation of FO-Estimator: a) BPSK input
b) QPSK input



